{"title":"需要在水利基础设施中采用规模分散的系统,以实现可持续性并建立复原力","authors":"P. Kalbar, S. Lokhande","doi":"10.2166/wp.2023.267","DOIUrl":null,"url":null,"abstract":"\n Urban water infrastructure (UWI) in cities faces enormous pressure to cope with increased water demands, handle extreme events and improve the service with minimum resource consumption and environmental impacts. The current study presents an approach for addressing the challenges in UWI, specifically in water supply and sewerage. The article argues a need for a paradigm shift that simultaneously includes the sustainability and resilience aspects throughout the life cycle of UWI. The article further highlights the issues in the prevailing approach of centralized infrastructure and demonstrates the necessity of moving away from such an approach and shifting towards decentralized infrastructure. Understanding the factors accelerating decentralization to attain a paradigm shift to decentralization is necessary. Hence, the study first identifies the drivers of decentralization. Secondly, the need for an appropriate scale to be considered while implementing decentralized UWI is highlighted in this study. Furthermore, the effect of the scale of infrastructure is discussed through the trade-offs between life-cycle costs, ease of governance, resilience and recycling benefits. The approach of scaled decentralization outlined in the study will be useful for developing countries to plan new infrastructure and also for developed countries to replace the ageing UWI to create future sustainable and resilient urban systems","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":" ","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Need to adopt scaled decentralized systems in the water infrastructure to achieve sustainability and build resilience\",\"authors\":\"P. Kalbar, S. Lokhande\",\"doi\":\"10.2166/wp.2023.267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Urban water infrastructure (UWI) in cities faces enormous pressure to cope with increased water demands, handle extreme events and improve the service with minimum resource consumption and environmental impacts. The current study presents an approach for addressing the challenges in UWI, specifically in water supply and sewerage. The article argues a need for a paradigm shift that simultaneously includes the sustainability and resilience aspects throughout the life cycle of UWI. The article further highlights the issues in the prevailing approach of centralized infrastructure and demonstrates the necessity of moving away from such an approach and shifting towards decentralized infrastructure. Understanding the factors accelerating decentralization to attain a paradigm shift to decentralization is necessary. Hence, the study first identifies the drivers of decentralization. Secondly, the need for an appropriate scale to be considered while implementing decentralized UWI is highlighted in this study. Furthermore, the effect of the scale of infrastructure is discussed through the trade-offs between life-cycle costs, ease of governance, resilience and recycling benefits. The approach of scaled decentralization outlined in the study will be useful for developing countries to plan new infrastructure and also for developed countries to replace the ageing UWI to create future sustainable and resilient urban systems\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2166/wp.2023.267\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wp.2023.267","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Need to adopt scaled decentralized systems in the water infrastructure to achieve sustainability and build resilience
Urban water infrastructure (UWI) in cities faces enormous pressure to cope with increased water demands, handle extreme events and improve the service with minimum resource consumption and environmental impacts. The current study presents an approach for addressing the challenges in UWI, specifically in water supply and sewerage. The article argues a need for a paradigm shift that simultaneously includes the sustainability and resilience aspects throughout the life cycle of UWI. The article further highlights the issues in the prevailing approach of centralized infrastructure and demonstrates the necessity of moving away from such an approach and shifting towards decentralized infrastructure. Understanding the factors accelerating decentralization to attain a paradigm shift to decentralization is necessary. Hence, the study first identifies the drivers of decentralization. Secondly, the need for an appropriate scale to be considered while implementing decentralized UWI is highlighted in this study. Furthermore, the effect of the scale of infrastructure is discussed through the trade-offs between life-cycle costs, ease of governance, resilience and recycling benefits. The approach of scaled decentralization outlined in the study will be useful for developing countries to plan new infrastructure and also for developed countries to replace the ageing UWI to create future sustainable and resilient urban systems
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.