瓦尔德豪森结构的比较

IF 0.5 Q3 MATHEMATICS
J. Bergner, A. Osorno, Viktoriya Ozornova, M. Rovelli, Claudia I. Scheimbauer
{"title":"瓦尔德豪森结构的比较","authors":"J. Bergner, A. Osorno, Viktoriya Ozornova, M. Rovelli, Claudia I. Scheimbauer","doi":"10.2140/akt.2021.6.97","DOIUrl":null,"url":null,"abstract":"In previous work, we develop a generalized Waldhausen $S_{\\bullet}$-construction whose input is an augmented stable double Segal space and whose output is a unital 2-Segal space. Here, we prove that this construction recovers the previously known $S_{\\bullet}$-constructions for exact categories and for stable and exact $(\\infty,1)$-categories, as well as the relative $S_{\\bullet}$-construction for exact functors.","PeriodicalId":42182,"journal":{"name":"Annals of K-Theory","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Comparison of Waldhausen constructions\",\"authors\":\"J. Bergner, A. Osorno, Viktoriya Ozornova, M. Rovelli, Claudia I. Scheimbauer\",\"doi\":\"10.2140/akt.2021.6.97\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In previous work, we develop a generalized Waldhausen $S_{\\\\bullet}$-construction whose input is an augmented stable double Segal space and whose output is a unital 2-Segal space. Here, we prove that this construction recovers the previously known $S_{\\\\bullet}$-constructions for exact categories and for stable and exact $(\\\\infty,1)$-categories, as well as the relative $S_{\\\\bullet}$-construction for exact functors.\",\"PeriodicalId\":42182,\"journal\":{\"name\":\"Annals of K-Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of K-Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/akt.2021.6.97\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/akt.2021.6.97","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

在以前的工作中,我们发展了一个广义Waldhausen$S_{\bullet}$-构造,其输入是增广稳定双Segal空间,其输出是酉2-合法空间。在这里,我们证明了这个构造恢复了精确范畴和稳定精确的$(\infty,1)$-范畴的先前已知的$S_{\bullt}$-构造,以及精确函子的相对$S_{\pullt}$构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of Waldhausen constructions
In previous work, we develop a generalized Waldhausen $S_{\bullet}$-construction whose input is an augmented stable double Segal space and whose output is a unital 2-Segal space. Here, we prove that this construction recovers the previously known $S_{\bullet}$-constructions for exact categories and for stable and exact $(\infty,1)$-categories, as well as the relative $S_{\bullet}$-construction for exact functors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of K-Theory
Annals of K-Theory MATHEMATICS-
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信