基于CNN的花卉图像分类新混合模型的实现与评价

IF 1.1 Q3 INFORMATION SCIENCE & LIBRARY SCIENCE
R. Kaur, Anubha Jain
{"title":"基于CNN的花卉图像分类新混合模型的实现与评价","authors":"R. Kaur, Anubha Jain","doi":"10.1080/02522667.2022.2094081","DOIUrl":null,"url":null,"abstract":"Abstract Convolutional Neural Networks (CNN) is an advanced technique for image classification. Lots of CNN models have been used for the classification of objects in the images. CNN is trained using profound learning algorithms that have made some enormous achievements in the recognition of large-scale identification methods in the field of machine learning. This paper proposes hybrid models for flower classification in order to achieve better classification accuracy. The study implemented four different hybrid models; the first is VGG16+SVM, the second is ResNet50+SVM, then AlexNet + SVM, and the last hybrid model is GoogleNet + SVM. The ordered dataset conveys 6027 images of various species of flowers. The first execution model result the accuracy of 80.67%, the second model accuracy is of 90.01%, the third model result the accuracy of 80.27%, and the last model carried out an 82.54% total accuracy.","PeriodicalId":46518,"journal":{"name":"JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES","volume":"43 1","pages":"1963 - 1973"},"PeriodicalIF":1.1000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Implementation and assessment of new hybrid model using CNN for flower image classification\",\"authors\":\"R. Kaur, Anubha Jain\",\"doi\":\"10.1080/02522667.2022.2094081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Convolutional Neural Networks (CNN) is an advanced technique for image classification. Lots of CNN models have been used for the classification of objects in the images. CNN is trained using profound learning algorithms that have made some enormous achievements in the recognition of large-scale identification methods in the field of machine learning. This paper proposes hybrid models for flower classification in order to achieve better classification accuracy. The study implemented four different hybrid models; the first is VGG16+SVM, the second is ResNet50+SVM, then AlexNet + SVM, and the last hybrid model is GoogleNet + SVM. The ordered dataset conveys 6027 images of various species of flowers. The first execution model result the accuracy of 80.67%, the second model accuracy is of 90.01%, the third model result the accuracy of 80.27%, and the last model carried out an 82.54% total accuracy.\",\"PeriodicalId\":46518,\"journal\":{\"name\":\"JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES\",\"volume\":\"43 1\",\"pages\":\"1963 - 1973\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02522667.2022.2094081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INFORMATION SCIENCE & LIBRARY SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02522667.2022.2094081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 1

摘要

摘要卷积神经网络(CNN)是一种先进的图像分类技术。许多CNN模型已经被用于图像中物体的分类。CNN使用深度学习算法进行训练,这些算法在机器学习领域的大规模识别方法识别方面取得了巨大成就。为了达到更好的分类精度,本文提出了花卉分类的混合模型。该研究采用了四种不同的混合模式;第一种是VGG16+SVM,第二种是ResNet50+SVM,然后是AlexNet+SVM,最后一种混合模型是GoogleNet+SVM。有序数据集传达了6027幅各种花卉的图像。第一个执行模型的准确率为80.67%,第二个模型的准确度为90.01%,第三个模型的正确率为80.27%,最后一个模型的总准确率为82.54%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementation and assessment of new hybrid model using CNN for flower image classification
Abstract Convolutional Neural Networks (CNN) is an advanced technique for image classification. Lots of CNN models have been used for the classification of objects in the images. CNN is trained using profound learning algorithms that have made some enormous achievements in the recognition of large-scale identification methods in the field of machine learning. This paper proposes hybrid models for flower classification in order to achieve better classification accuracy. The study implemented four different hybrid models; the first is VGG16+SVM, the second is ResNet50+SVM, then AlexNet + SVM, and the last hybrid model is GoogleNet + SVM. The ordered dataset conveys 6027 images of various species of flowers. The first execution model result the accuracy of 80.67%, the second model accuracy is of 90.01%, the third model result the accuracy of 80.27%, and the last model carried out an 82.54% total accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES
JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES INFORMATION SCIENCE & LIBRARY SCIENCE-
自引率
21.40%
发文量
88
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信