概率空间测度的多重分形分析

IF 0.6 Q3 MATHEMATICS
Zhiming Li, B. Selmi
{"title":"概率空间测度的多重分形分析","authors":"Zhiming Li, B. Selmi","doi":"10.1215/00192082-9446058","DOIUrl":null,"url":null,"abstract":"In this paper, we calculate the relative multifractal Hausdorff and packing dimensions of measures in a probability space. Also, we obtain the analogue of Frostman’s lemma in a probability space for a relative multifractal Hausdorff measure. In the same way, there is a valid result for the relative multifractal packing pre-measure. Furthermore, we obtain the representations of the functions b and B by means of the analogue of Frostman’s lemma, and we provide a technique for showing that E is a (q,μ)-fractal with respect to ν. In addition, we suggest new proofs of theorems on the relative multifractal formalism in a probability space. They yield results even at a point q for which the multifractal functions b(q) and B(q) differ.","PeriodicalId":56298,"journal":{"name":"Illinois Journal of Mathematics","volume":"65 1","pages":"687-718"},"PeriodicalIF":0.6000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On the multifractal analysis of measures in a probability space\",\"authors\":\"Zhiming Li, B. Selmi\",\"doi\":\"10.1215/00192082-9446058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we calculate the relative multifractal Hausdorff and packing dimensions of measures in a probability space. Also, we obtain the analogue of Frostman’s lemma in a probability space for a relative multifractal Hausdorff measure. In the same way, there is a valid result for the relative multifractal packing pre-measure. Furthermore, we obtain the representations of the functions b and B by means of the analogue of Frostman’s lemma, and we provide a technique for showing that E is a (q,μ)-fractal with respect to ν. In addition, we suggest new proofs of theorems on the relative multifractal formalism in a probability space. They yield results even at a point q for which the multifractal functions b(q) and B(q) differ.\",\"PeriodicalId\":56298,\"journal\":{\"name\":\"Illinois Journal of Mathematics\",\"volume\":\"65 1\",\"pages\":\"687-718\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Illinois Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1215/00192082-9446058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Illinois Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/00192082-9446058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

本文计算了概率空间中测度的相对多重分形Hausdorff维数和包装维数。此外,我们还得到了相对多重分形Hausdorff测度在概率空间中的类似Frostman引理。同样,对于相对多重分形包装预测度也有一个有效的结果。进一步,我们利用Frostman引理的类比得到了函数b和b的表示,并给出了一种证明E是a (q,μ)关于ν的分形的方法。此外,我们提出了概率空间中相对多重分形形式定理的新证明。它们甚至在多重分形函数b(q)和b(q)不同的点q上得到结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the multifractal analysis of measures in a probability space
In this paper, we calculate the relative multifractal Hausdorff and packing dimensions of measures in a probability space. Also, we obtain the analogue of Frostman’s lemma in a probability space for a relative multifractal Hausdorff measure. In the same way, there is a valid result for the relative multifractal packing pre-measure. Furthermore, we obtain the representations of the functions b and B by means of the analogue of Frostman’s lemma, and we provide a technique for showing that E is a (q,μ)-fractal with respect to ν. In addition, we suggest new proofs of theorems on the relative multifractal formalism in a probability space. They yield results even at a point q for which the multifractal functions b(q) and B(q) differ.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
18
期刊介绍: IJM strives to publish high quality research papers in all areas of mainstream mathematics that are of interest to a substantial number of its readers. IJM is published by Duke University Press on behalf of the Department of Mathematics at the University of Illinois at Urbana-Champaign.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信