{"title":"关于向量线性双自回归","authors":"Yuchang Lin, Qianqian Zhu","doi":"10.1111/jtsa.12717","DOIUrl":null,"url":null,"abstract":"<p>This article proposes a vector linear double autoregressive (VLDAR) model with the constant conditional correlation specification, which can capture the co-movement of multiple series and jointly model their conditional means and volatilities. The strict stationarity of the new model is discussed, and a self-weighted Gaussian quasi-maximum likelihood estimator (SQMLE) is proposed for estimation. To reduce the computational cost, especially when the series dimension is large, a block coordinate descent (BCD) algorithm is provided to calculate the SQMLE. Moreover, a Bayesian information criterion is introduced for order selection, and a multi-variate mixed portmanteau test is constructed for checking the adequacy of fitted models. All asymptotic properties for estimation, model selection, and portmanteau test are established without any moment restrictions imposed on the data process, which makes the new model and its inference tools applicable for heavy-tailed data. Simulation experiments are conducted to evaluate the finite-sample performance of the proposed methodology, and an empirical example on analyzing S&P 500 sector indices is presented to illustrate the usefulness of the new model in contrast with competitors.</p>","PeriodicalId":49973,"journal":{"name":"Journal of Time Series Analysis","volume":"45 3","pages":"376-397"},"PeriodicalIF":1.2000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On vector linear double autoregression\",\"authors\":\"Yuchang Lin, Qianqian Zhu\",\"doi\":\"10.1111/jtsa.12717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article proposes a vector linear double autoregressive (VLDAR) model with the constant conditional correlation specification, which can capture the co-movement of multiple series and jointly model their conditional means and volatilities. The strict stationarity of the new model is discussed, and a self-weighted Gaussian quasi-maximum likelihood estimator (SQMLE) is proposed for estimation. To reduce the computational cost, especially when the series dimension is large, a block coordinate descent (BCD) algorithm is provided to calculate the SQMLE. Moreover, a Bayesian information criterion is introduced for order selection, and a multi-variate mixed portmanteau test is constructed for checking the adequacy of fitted models. All asymptotic properties for estimation, model selection, and portmanteau test are established without any moment restrictions imposed on the data process, which makes the new model and its inference tools applicable for heavy-tailed data. Simulation experiments are conducted to evaluate the finite-sample performance of the proposed methodology, and an empirical example on analyzing S&P 500 sector indices is presented to illustrate the usefulness of the new model in contrast with competitors.</p>\",\"PeriodicalId\":49973,\"journal\":{\"name\":\"Journal of Time Series Analysis\",\"volume\":\"45 3\",\"pages\":\"376-397\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Time Series Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12717\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Time Series Analysis","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12717","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
This article proposes a vector linear double autoregressive (VLDAR) model with the constant conditional correlation specification, which can capture the co-movement of multiple series and jointly model their conditional means and volatilities. The strict stationarity of the new model is discussed, and a self-weighted Gaussian quasi-maximum likelihood estimator (SQMLE) is proposed for estimation. To reduce the computational cost, especially when the series dimension is large, a block coordinate descent (BCD) algorithm is provided to calculate the SQMLE. Moreover, a Bayesian information criterion is introduced for order selection, and a multi-variate mixed portmanteau test is constructed for checking the adequacy of fitted models. All asymptotic properties for estimation, model selection, and portmanteau test are established without any moment restrictions imposed on the data process, which makes the new model and its inference tools applicable for heavy-tailed data. Simulation experiments are conducted to evaluate the finite-sample performance of the proposed methodology, and an empirical example on analyzing S&P 500 sector indices is presented to illustrate the usefulness of the new model in contrast with competitors.
期刊介绍:
During the last 30 years Time Series Analysis has become one of the most important and widely used branches of Mathematical Statistics. Its fields of application range from neurophysiology to astrophysics and it covers such well-known areas as economic forecasting, study of biological data, control systems, signal processing and communications and vibrations engineering.
The Journal of Time Series Analysis started in 1980, has since become the leading journal in its field, publishing papers on both fundamental theory and applications, as well as review papers dealing with recent advances in major areas of the subject and short communications on theoretical developments. The editorial board consists of many of the world''s leading experts in Time Series Analysis.