FlexRay时钟同步算法的形式化建模与验证

Pub Date : 2023-03-09 DOI:10.14429/dsj.73.18449
Shimmi Asokan, K.H. Kochaleema, G. Santhosh Kumar
{"title":"FlexRay时钟同步算法的形式化建模与验证","authors":"Shimmi Asokan, K.H. Kochaleema, G. Santhosh Kumar","doi":"10.14429/dsj.73.18449","DOIUrl":null,"url":null,"abstract":"\n \n \n \nThe hundreds of electronic control devices used in an automotive system can effectively communicate with one another, thanks to an in-vehicle network (IVN) like FlexRay. Even though every node in the network will be running on its local clock, a global notion of time is essential. The clock synchronisation algorithm accomplishes this global time between the nodes in FlexRay. In this era of self-driving cars, the vehicle’s safety is paramount. For the vehicle to operate safely and smoothly, timely communication of information is critical, and the clock synchronisation algorithm plays a vital role in this. It is essential to formally test the clock synchronisation algorithm’s correctness. This paper attempts to model and verify the clock synchronisation algorithm of FlexRay using formal methods, which in turn enhance the reliability of safety-critical automotive systems. The clock synchronisation is modelled as a network of six timed automata in the UPPAAL model checker. Three system models were developed, a model for an ideal clock, another for a drifting clock, and a third model considering propagation delay. The precision of the clocks is verified to be within the prescribed limits. Simulation studies are also conducted on the model to ensure that the clock’s drift is always within the precision. \n \n \n \n","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formal Modelling and Verification of the Clock Synchronization Algorithm of FlexRay\",\"authors\":\"Shimmi Asokan, K.H. Kochaleema, G. Santhosh Kumar\",\"doi\":\"10.14429/dsj.73.18449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n \\n \\nThe hundreds of electronic control devices used in an automotive system can effectively communicate with one another, thanks to an in-vehicle network (IVN) like FlexRay. Even though every node in the network will be running on its local clock, a global notion of time is essential. The clock synchronisation algorithm accomplishes this global time between the nodes in FlexRay. In this era of self-driving cars, the vehicle’s safety is paramount. For the vehicle to operate safely and smoothly, timely communication of information is critical, and the clock synchronisation algorithm plays a vital role in this. It is essential to formally test the clock synchronisation algorithm’s correctness. This paper attempts to model and verify the clock synchronisation algorithm of FlexRay using formal methods, which in turn enhance the reliability of safety-critical automotive systems. The clock synchronisation is modelled as a network of six timed automata in the UPPAAL model checker. Three system models were developed, a model for an ideal clock, another for a drifting clock, and a third model considering propagation delay. The precision of the clocks is verified to be within the prescribed limits. Simulation studies are also conducted on the model to ensure that the clock’s drift is always within the precision. \\n \\n \\n \\n\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14429/dsj.73.18449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14429/dsj.73.18449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于FlexRay这样的车载网络(IVN),汽车系统中使用的数百个电子控制设备可以有效地相互通信。尽管网络中的每个节点都将在其本地时钟上运行,但全局时间概念是必不可少的。时钟同步算法实现了FlexRay中节点之间的全局时间。在这个自动驾驶汽车的时代,汽车的安全至关重要。为了使车辆安全平稳地运行,及时的信息交流至关重要,时钟同步算法在这方面发挥着至关重要的作用。必须正式测试时钟同步算法的正确性。本文试图使用形式化方法对FlexRay的时钟同步算法进行建模和验证,从而提高安全关键汽车系统的可靠性。在UPPAAL模型检查器中,时钟同步被建模为六个时间自动机的网络。开发了三个系统模型,一个是理想时钟模型,另一个是漂移时钟模型,第三个是考虑传播延迟的模型。时钟的精度经验证在规定的限度内。还对该模型进行了仿真研究,以确保时钟的漂移始终在精度范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Formal Modelling and Verification of the Clock Synchronization Algorithm of FlexRay
The hundreds of electronic control devices used in an automotive system can effectively communicate with one another, thanks to an in-vehicle network (IVN) like FlexRay. Even though every node in the network will be running on its local clock, a global notion of time is essential. The clock synchronisation algorithm accomplishes this global time between the nodes in FlexRay. In this era of self-driving cars, the vehicle’s safety is paramount. For the vehicle to operate safely and smoothly, timely communication of information is critical, and the clock synchronisation algorithm plays a vital role in this. It is essential to formally test the clock synchronisation algorithm’s correctness. This paper attempts to model and verify the clock synchronisation algorithm of FlexRay using formal methods, which in turn enhance the reliability of safety-critical automotive systems. The clock synchronisation is modelled as a network of six timed automata in the UPPAAL model checker. Three system models were developed, a model for an ideal clock, another for a drifting clock, and a third model considering propagation delay. The precision of the clocks is verified to be within the prescribed limits. Simulation studies are also conducted on the model to ensure that the clock’s drift is always within the precision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信