{"title":"更明亮、更快、更强:自由分子的超快散射","authors":"Asami Odate, A. Kirrander, P. Weber, M. Minitti","doi":"10.1080/23746149.2022.2126796","DOIUrl":null,"url":null,"abstract":"ABSTRACT Advances in FEL technologies have contributed remarkably to various scientific fields over the past decade, and ultrafast molecular dynamics is no exception. The ability to probe motions of the molecule via scattering provides uniquely direct structural information, which, when combined with traditional spectroscopic techniques of comparable temporal resolution, paints a holistic movie of the molecular dynamics. This review aims to provide an introduction to the ultrafast scattering of gas-phase molecules, and to identify the key results and technological breakthroughs that advance our acquaintance of ultrafast molecular dynamics, with a particular focus on the achievements in ultrafast molecular dynamics since the first generation of FEL facilities. We present a brief history of gas-phase ultrafast scattering and the fundamentals of electron- and x-ray scattering, highlighting the complementarity, differences, and bottlenecks of the two experimental scattering methods. We then consider key upgrades in XRS and UED experiments that facilitated the unprecedented spatiotemporal resolution that enabled many of the notable results in the field. Finally, we examine anticipated facility upgrades that address the demand for experimental versatility and enable further developments and exploration. Graphical Abstract","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":" ","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Brighter, faster, stronger: ultrafast scattering of free molecules\",\"authors\":\"Asami Odate, A. Kirrander, P. Weber, M. Minitti\",\"doi\":\"10.1080/23746149.2022.2126796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Advances in FEL technologies have contributed remarkably to various scientific fields over the past decade, and ultrafast molecular dynamics is no exception. The ability to probe motions of the molecule via scattering provides uniquely direct structural information, which, when combined with traditional spectroscopic techniques of comparable temporal resolution, paints a holistic movie of the molecular dynamics. This review aims to provide an introduction to the ultrafast scattering of gas-phase molecules, and to identify the key results and technological breakthroughs that advance our acquaintance of ultrafast molecular dynamics, with a particular focus on the achievements in ultrafast molecular dynamics since the first generation of FEL facilities. We present a brief history of gas-phase ultrafast scattering and the fundamentals of electron- and x-ray scattering, highlighting the complementarity, differences, and bottlenecks of the two experimental scattering methods. We then consider key upgrades in XRS and UED experiments that facilitated the unprecedented spatiotemporal resolution that enabled many of the notable results in the field. Finally, we examine anticipated facility upgrades that address the demand for experimental versatility and enable further developments and exploration. Graphical Abstract\",\"PeriodicalId\":7374,\"journal\":{\"name\":\"Advances in Physics: X\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2022-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Physics: X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1080/23746149.2022.2126796\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Physics: X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/23746149.2022.2126796","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Brighter, faster, stronger: ultrafast scattering of free molecules
ABSTRACT Advances in FEL technologies have contributed remarkably to various scientific fields over the past decade, and ultrafast molecular dynamics is no exception. The ability to probe motions of the molecule via scattering provides uniquely direct structural information, which, when combined with traditional spectroscopic techniques of comparable temporal resolution, paints a holistic movie of the molecular dynamics. This review aims to provide an introduction to the ultrafast scattering of gas-phase molecules, and to identify the key results and technological breakthroughs that advance our acquaintance of ultrafast molecular dynamics, with a particular focus on the achievements in ultrafast molecular dynamics since the first generation of FEL facilities. We present a brief history of gas-phase ultrafast scattering and the fundamentals of electron- and x-ray scattering, highlighting the complementarity, differences, and bottlenecks of the two experimental scattering methods. We then consider key upgrades in XRS and UED experiments that facilitated the unprecedented spatiotemporal resolution that enabled many of the notable results in the field. Finally, we examine anticipated facility upgrades that address the demand for experimental versatility and enable further developments and exploration. Graphical Abstract
期刊介绍:
Advances in Physics: X is a fully open-access journal that promotes the centrality of physics and physical measurement to modern science and technology. Advances in Physics: X aims to demonstrate the interconnectivity of physics, meaning the intellectual relationships that exist between one branch of physics and another, as well as the influence of physics across (hence the “X”) traditional boundaries into other disciplines including:
Chemistry
Materials Science
Engineering
Biology
Medicine