{"title":"基于通信和社会信任的汽车社交网络混合信任模型","authors":"Na Fan, Shuai Shen, C. Wu, J. Yao","doi":"10.1177/15501329221097588","DOIUrl":null,"url":null,"abstract":"Vehicular social networks are emerging hybrid networks that combine traditional vehicular networks and social networks, with two key types of nodes, that is, vehicles and drivers. Since vehicle behaviors are controlled or influenced by drivers, the trustworthiness of a vehicle node is essentially determined by its own communication behaviors and its driver’s social characteristics. Therefore, human factors should be considered in securing the communication in vehicular social networks. In this article, we propose a hybrid trust model that considers both communication trust and social trust. Within the proposed scheme, we first construct a communication trust model to quantify the trust value based on the interactions between vehicle nodes, and then develop a social trust model to measure the social trust based on the social characteristics of vehicle drivers. Based on these two trust models, we compute the combined trust assessment of a vehicle node in vehicular social networks. Extensive simulations show that the proposed hybrid trust model improves the accuracy in evaluating the trustworthiness of vehicle nodes and the efficiency of communication in vehicular social networks.","PeriodicalId":50327,"journal":{"name":"International Journal of Distributed Sensor Networks","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A hybrid trust model based on communication and social trust for vehicular social networks\",\"authors\":\"Na Fan, Shuai Shen, C. Wu, J. Yao\",\"doi\":\"10.1177/15501329221097588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vehicular social networks are emerging hybrid networks that combine traditional vehicular networks and social networks, with two key types of nodes, that is, vehicles and drivers. Since vehicle behaviors are controlled or influenced by drivers, the trustworthiness of a vehicle node is essentially determined by its own communication behaviors and its driver’s social characteristics. Therefore, human factors should be considered in securing the communication in vehicular social networks. In this article, we propose a hybrid trust model that considers both communication trust and social trust. Within the proposed scheme, we first construct a communication trust model to quantify the trust value based on the interactions between vehicle nodes, and then develop a social trust model to measure the social trust based on the social characteristics of vehicle drivers. Based on these two trust models, we compute the combined trust assessment of a vehicle node in vehicular social networks. Extensive simulations show that the proposed hybrid trust model improves the accuracy in evaluating the trustworthiness of vehicle nodes and the efficiency of communication in vehicular social networks.\",\"PeriodicalId\":50327,\"journal\":{\"name\":\"International Journal of Distributed Sensor Networks\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Distributed Sensor Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/15501329221097588\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Distributed Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/15501329221097588","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A hybrid trust model based on communication and social trust for vehicular social networks
Vehicular social networks are emerging hybrid networks that combine traditional vehicular networks and social networks, with two key types of nodes, that is, vehicles and drivers. Since vehicle behaviors are controlled or influenced by drivers, the trustworthiness of a vehicle node is essentially determined by its own communication behaviors and its driver’s social characteristics. Therefore, human factors should be considered in securing the communication in vehicular social networks. In this article, we propose a hybrid trust model that considers both communication trust and social trust. Within the proposed scheme, we first construct a communication trust model to quantify the trust value based on the interactions between vehicle nodes, and then develop a social trust model to measure the social trust based on the social characteristics of vehicle drivers. Based on these two trust models, we compute the combined trust assessment of a vehicle node in vehicular social networks. Extensive simulations show that the proposed hybrid trust model improves the accuracy in evaluating the trustworthiness of vehicle nodes and the efficiency of communication in vehicular social networks.
期刊介绍:
International Journal of Distributed Sensor Networks (IJDSN) is a JCR ranked, peer-reviewed, open access journal that focuses on applied research and applications of sensor networks. The goal of this journal is to provide a forum for the publication of important research contributions in developing high performance computing solutions to problems arising from the complexities of these sensor network systems. Articles highlight advances in uses of sensor network systems for solving computational tasks in manufacturing, engineering and environmental systems.