嵌入超曲面上漂移拉普拉斯算子第一特征值的估计

IF 0.6 4区 数学 Q3 MATHEMATICS
Jing Mao, N. Xiang
{"title":"嵌入超曲面上漂移拉普拉斯算子第一特征值的估计","authors":"Jing Mao, N. Xiang","doi":"10.14492/HOKMJ/1537948834","DOIUrl":null,"url":null,"abstract":"Abstract. For an (n − 1)-dimensional compact orientable smooth metric measure space ` M, g, e−f dvg ́ embedded in an n-dimensional compact orientable Riemannian manifold N , we successfully give a lower bound for the first nonzero eigenvalue of the drifting Laplacian on M , provided the Ricci curvature of N is bounded from below by a positive constant and the weighted function f on M satisfies two constraints.","PeriodicalId":55051,"journal":{"name":"Hokkaido Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.14492/HOKMJ/1537948834","citationCount":"0","resultStr":"{\"title\":\"Estimates for the first eigenvalue of the drifting Laplacian on embedded hypersurfaces\",\"authors\":\"Jing Mao, N. Xiang\",\"doi\":\"10.14492/HOKMJ/1537948834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. For an (n − 1)-dimensional compact orientable smooth metric measure space ` M, g, e−f dvg ́ embedded in an n-dimensional compact orientable Riemannian manifold N , we successfully give a lower bound for the first nonzero eigenvalue of the drifting Laplacian on M , provided the Ricci curvature of N is bounded from below by a positive constant and the weighted function f on M satisfies two constraints.\",\"PeriodicalId\":55051,\"journal\":{\"name\":\"Hokkaido Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.14492/HOKMJ/1537948834\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hokkaido Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14492/HOKMJ/1537948834\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hokkaido Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14492/HOKMJ/1537948834","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要对于嵌入n维紧致可定向黎曼流形n中的(n-1)维紧致可取向光滑度量测度空间“M,g,e−f dvǵ”,我们成功地给出了M上漂移拉普拉斯算子的第一个非零特征值的下界,假设N的Ricci曲率由正常数从下界,并且M上的加权函数f满足两个约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimates for the first eigenvalue of the drifting Laplacian on embedded hypersurfaces
Abstract. For an (n − 1)-dimensional compact orientable smooth metric measure space ` M, g, e−f dvg ́ embedded in an n-dimensional compact orientable Riemannian manifold N , we successfully give a lower bound for the first nonzero eigenvalue of the drifting Laplacian on M , provided the Ricci curvature of N is bounded from below by a positive constant and the weighted function f on M satisfies two constraints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: The main purpose of Hokkaido Mathematical Journal is to promote research activities in pure and applied mathematics by publishing original research papers. Selection for publication is on the basis of reports from specialist referees commissioned by the editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信