多层感知器算法预测油层体积因子的混合计算模型

Omid Hazbeh, Mehdi Ahmadi Alvar, Saeed Khezerloo-ye Aghdam, Hamzeh Ghorbani, N. Mohamadian, J. Moghadasi
{"title":"多层感知器算法预测油层体积因子的混合计算模型","authors":"Omid Hazbeh, Mehdi Ahmadi Alvar, Saeed Khezerloo-ye Aghdam, Hamzeh Ghorbani, N. Mohamadian, J. Moghadasi","doi":"10.21608/JPME.2021.52149.1062","DOIUrl":null,"url":null,"abstract":"Achieving important and effective reservoir parameters requires a lot of time and cost, and also achieving these devices is sometimes not possible. In this research, a dataset including 565 datapoints collected from published articles have been used. The input data for forecasting oil formation volume factor (OFVF) were solution gas oil ratio (Rs), gas specific gravity (γg), API gravity (API0) (or oil density γo), and temperature (T). We have tried to introduce two hybrid methods multilayer perceptron (MLP) with artificial bee colony (ABC) and firefly (FF) algorithms to predict this parameter and compare their results after extraction. After essential investigations in this study, the results show that MLP-ABC gives the best accuracy for predicting OFVF. For MLP-ABC model OFVF prediction accuracy in terms of RMSE T> API> γg and these results show that the effect of Rs is more than other input variables and the effect of γg is the lowest.","PeriodicalId":34437,"journal":{"name":"Journal of Petroleum and Mining Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Hybrid computing models to predict oil formation volume factor using multilayer perceptron algorithm\",\"authors\":\"Omid Hazbeh, Mehdi Ahmadi Alvar, Saeed Khezerloo-ye Aghdam, Hamzeh Ghorbani, N. Mohamadian, J. Moghadasi\",\"doi\":\"10.21608/JPME.2021.52149.1062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Achieving important and effective reservoir parameters requires a lot of time and cost, and also achieving these devices is sometimes not possible. In this research, a dataset including 565 datapoints collected from published articles have been used. The input data for forecasting oil formation volume factor (OFVF) were solution gas oil ratio (Rs), gas specific gravity (γg), API gravity (API0) (or oil density γo), and temperature (T). We have tried to introduce two hybrid methods multilayer perceptron (MLP) with artificial bee colony (ABC) and firefly (FF) algorithms to predict this parameter and compare their results after extraction. After essential investigations in this study, the results show that MLP-ABC gives the best accuracy for predicting OFVF. For MLP-ABC model OFVF prediction accuracy in terms of RMSE T> API> γg and these results show that the effect of Rs is more than other input variables and the effect of γg is the lowest.\",\"PeriodicalId\":34437,\"journal\":{\"name\":\"Journal of Petroleum and Mining Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Petroleum and Mining Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21608/JPME.2021.52149.1062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum and Mining Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/JPME.2021.52149.1062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

实现重要而有效的储层参数需要大量的时间和成本,而且有时也不可能实现这些装置。在这项研究中,使用了一个数据集,包括从已发表的文章中收集的565个数据点。预测油层体积因子(OFVF)的输入数据是溶液气油比(Rs)、气体比重(γg)、API重力(API0)(或油密度γo)和温度(T)。我们尝试引入两种混合方法——多层感知器(MLP)与人工蜂群(ABC)和萤火虫(FF)算法来预测该参数,并在提取后比较它们的结果。经过本研究的基本研究,结果表明MLP-ABC在预测OFVF方面具有最佳的准确性。对于MLP-ABC模型,OFVF预测精度在RMSE T>API>γg方面,这些结果表明Rs的影响大于其他输入变量,γg的影响最低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid computing models to predict oil formation volume factor using multilayer perceptron algorithm
Achieving important and effective reservoir parameters requires a lot of time and cost, and also achieving these devices is sometimes not possible. In this research, a dataset including 565 datapoints collected from published articles have been used. The input data for forecasting oil formation volume factor (OFVF) were solution gas oil ratio (Rs), gas specific gravity (γg), API gravity (API0) (or oil density γo), and temperature (T). We have tried to introduce two hybrid methods multilayer perceptron (MLP) with artificial bee colony (ABC) and firefly (FF) algorithms to predict this parameter and compare their results after extraction. After essential investigations in this study, the results show that MLP-ABC gives the best accuracy for predicting OFVF. For MLP-ABC model OFVF prediction accuracy in terms of RMSE T> API> γg and these results show that the effect of Rs is more than other input variables and the effect of γg is the lowest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
8
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信