Theodore J. Zenzal, Darren Johnson, Frank R. Moore, Zoltán Németh
{"title":"当地天气和内生因素影响中短期鸣禽迁徙的开始","authors":"Theodore J. Zenzal, Darren Johnson, Frank R. Moore, Zoltán Németh","doi":"10.1111/jav.03029","DOIUrl":null,"url":null,"abstract":"<p>Migratory birds employ a variety of mechanisms to ensure appropriate timing of migration based on integration of endogenous and exogenous information. The cues to fatten and depart from the non-breeding area are often linked to exogenous cues such as temperature or precipitation and the endogenous program. Shorter distance migrants should rely heavily on environmental information when initiating migration given relatively close proximity to the breeding area. However, the ability to fatten and subsequently depart may be linked to individual circumstances, including current fuel load and body size. For early and late departing migrants, we investigate effects of temperature, precipitation, lean body mass, fuel load and day of year on the initiation of migration (i.e. fuel load and departure timing) from the non-breeding region by analyzing 21 years of banding data for four species of short- and medium-distance migrants. Temperatures at the non-breeding area were related to temperatures at potential stopover areas. Despite local cues being predictive of conditions further north, the amount variation explained by local weather conditions in our models differed by species and temporal period but was low overall (< 33% variation explained). For each species, we also compared lean body mass and fuel load between early and late departing migrants, which showed mixed results. Our combined results suggest that most individuals migrating short or medium distances in our study did not time the initiation of migration with local predictive cues alone, but rather other factors such as lean body mass, fuel load, day of year, which may be a proxy for the endogenous program, and those beyond the scope of our study also influenced the initiation of migration. Our study contributes to understanding which factors influence departure decisions of short- and medium-distance migrants as they transition from the non-breeding to the migratory phase of the annual cycle.</p>","PeriodicalId":15278,"journal":{"name":"Journal of Avian Biology","volume":"2023 3-4","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jav.03029","citationCount":"2","resultStr":"{\"title\":\"Local weather and endogenous factors affect the initiation of migration in short- and medium-distance songbird migrants\",\"authors\":\"Theodore J. Zenzal, Darren Johnson, Frank R. Moore, Zoltán Németh\",\"doi\":\"10.1111/jav.03029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Migratory birds employ a variety of mechanisms to ensure appropriate timing of migration based on integration of endogenous and exogenous information. The cues to fatten and depart from the non-breeding area are often linked to exogenous cues such as temperature or precipitation and the endogenous program. Shorter distance migrants should rely heavily on environmental information when initiating migration given relatively close proximity to the breeding area. However, the ability to fatten and subsequently depart may be linked to individual circumstances, including current fuel load and body size. For early and late departing migrants, we investigate effects of temperature, precipitation, lean body mass, fuel load and day of year on the initiation of migration (i.e. fuel load and departure timing) from the non-breeding region by analyzing 21 years of banding data for four species of short- and medium-distance migrants. Temperatures at the non-breeding area were related to temperatures at potential stopover areas. Despite local cues being predictive of conditions further north, the amount variation explained by local weather conditions in our models differed by species and temporal period but was low overall (< 33% variation explained). For each species, we also compared lean body mass and fuel load between early and late departing migrants, which showed mixed results. Our combined results suggest that most individuals migrating short or medium distances in our study did not time the initiation of migration with local predictive cues alone, but rather other factors such as lean body mass, fuel load, day of year, which may be a proxy for the endogenous program, and those beyond the scope of our study also influenced the initiation of migration. Our study contributes to understanding which factors influence departure decisions of short- and medium-distance migrants as they transition from the non-breeding to the migratory phase of the annual cycle.</p>\",\"PeriodicalId\":15278,\"journal\":{\"name\":\"Journal of Avian Biology\",\"volume\":\"2023 3-4\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jav.03029\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Avian Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jav.03029\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ORNITHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Avian Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jav.03029","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORNITHOLOGY","Score":null,"Total":0}
Local weather and endogenous factors affect the initiation of migration in short- and medium-distance songbird migrants
Migratory birds employ a variety of mechanisms to ensure appropriate timing of migration based on integration of endogenous and exogenous information. The cues to fatten and depart from the non-breeding area are often linked to exogenous cues such as temperature or precipitation and the endogenous program. Shorter distance migrants should rely heavily on environmental information when initiating migration given relatively close proximity to the breeding area. However, the ability to fatten and subsequently depart may be linked to individual circumstances, including current fuel load and body size. For early and late departing migrants, we investigate effects of temperature, precipitation, lean body mass, fuel load and day of year on the initiation of migration (i.e. fuel load and departure timing) from the non-breeding region by analyzing 21 years of banding data for four species of short- and medium-distance migrants. Temperatures at the non-breeding area were related to temperatures at potential stopover areas. Despite local cues being predictive of conditions further north, the amount variation explained by local weather conditions in our models differed by species and temporal period but was low overall (< 33% variation explained). For each species, we also compared lean body mass and fuel load between early and late departing migrants, which showed mixed results. Our combined results suggest that most individuals migrating short or medium distances in our study did not time the initiation of migration with local predictive cues alone, but rather other factors such as lean body mass, fuel load, day of year, which may be a proxy for the endogenous program, and those beyond the scope of our study also influenced the initiation of migration. Our study contributes to understanding which factors influence departure decisions of short- and medium-distance migrants as they transition from the non-breeding to the migratory phase of the annual cycle.
期刊介绍:
Journal of Avian Biology publishes empirical and theoretical research in all areas of ornithology, with an emphasis on behavioural ecology, evolution and conservation.