多重复形物体的对角线

IF 0.5 4区 数学
Philip S. Hirschhorn
{"title":"多重复形物体的对角线","authors":"Philip S. Hirschhorn","doi":"10.1007/s40062-017-0169-z","DOIUrl":null,"url":null,"abstract":"<p>We show that the functor that takes a multicosimplicial object in a model category to its diagonal cosimplicial object is a right Quillen functor. This implies that the diagonal of a Reedy fibrant multicosimplicial object is a Reedy fibrant cosimplicial object, which has applications to the calculus of functors. We also show that, although the diagonal functor is a Quillen functor, it is not a Quillen equivalence for multicosimplicial spaces. We also discuss total objects and homotopy limits of multicosimplicial objects. We show that the total object of a multicosimplicial object is isomorphic to the total object of the diagonal, and that the diagonal embedding of the cosimplicial indexing category into the multicosimplicial indexing category is homotopy left cofinal, which implies that the homotopy limits are weakly equivalent if the multicosimplicial object is at least objectwise fibrant.</p>","PeriodicalId":636,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"12 4","pages":"971 - 992"},"PeriodicalIF":0.5000,"publicationDate":"2017-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-017-0169-z","citationCount":"2","resultStr":"{\"title\":\"The diagonal of a multicosimplicial object\",\"authors\":\"Philip S. Hirschhorn\",\"doi\":\"10.1007/s40062-017-0169-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that the functor that takes a multicosimplicial object in a model category to its diagonal cosimplicial object is a right Quillen functor. This implies that the diagonal of a Reedy fibrant multicosimplicial object is a Reedy fibrant cosimplicial object, which has applications to the calculus of functors. We also show that, although the diagonal functor is a Quillen functor, it is not a Quillen equivalence for multicosimplicial spaces. We also discuss total objects and homotopy limits of multicosimplicial objects. We show that the total object of a multicosimplicial object is isomorphic to the total object of the diagonal, and that the diagonal embedding of the cosimplicial indexing category into the multicosimplicial indexing category is homotopy left cofinal, which implies that the homotopy limits are weakly equivalent if the multicosimplicial object is at least objectwise fibrant.</p>\",\"PeriodicalId\":636,\"journal\":{\"name\":\"Journal of Homotopy and Related Structures\",\"volume\":\"12 4\",\"pages\":\"971 - 992\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2017-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40062-017-0169-z\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Homotopy and Related Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-017-0169-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-017-0169-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们证明了将模型范畴中的多重共单纯对象转化为其对角共单纯对象的函子是右Quillen函子。这意味着一个Reedy - fibrant多重共单纯对象的对角线是一个Reedy - fibrant共单纯对象,这在函子演算中有应用。我们还证明了,虽然对角函子是一个Quillen函子,但对于多重复简空间,它不是一个Quillen等价。我们还讨论了多共简对象的全对象和同伦极限。证明了多共单纯对象的总对象与对角线上的总对象是同构的,并且证明了多共单纯标度范畴对角嵌入到多共单纯标度范畴是同伦左协终的,这意味着如果多共单纯对象至少是对形纤维,则同伦极限是弱等价的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The diagonal of a multicosimplicial object

We show that the functor that takes a multicosimplicial object in a model category to its diagonal cosimplicial object is a right Quillen functor. This implies that the diagonal of a Reedy fibrant multicosimplicial object is a Reedy fibrant cosimplicial object, which has applications to the calculus of functors. We also show that, although the diagonal functor is a Quillen functor, it is not a Quillen equivalence for multicosimplicial spaces. We also discuss total objects and homotopy limits of multicosimplicial objects. We show that the total object of a multicosimplicial object is isomorphic to the total object of the diagonal, and that the diagonal embedding of the cosimplicial indexing category into the multicosimplicial indexing category is homotopy left cofinal, which implies that the homotopy limits are weakly equivalent if the multicosimplicial object is at least objectwise fibrant.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Homotopy and Related Structures
Journal of Homotopy and Related Structures Mathematics-Geometry and Topology
自引率
0.00%
发文量
0
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信