导数值域的注释

Q4 Mathematics
Y. Bouhafsi, M. Ech-chad, A. Zouaki
{"title":"导数值域的注释","authors":"Y. Bouhafsi, M. Ech-chad, A. Zouaki","doi":"10.15446/recolma.v56n2.108371","DOIUrl":null,"url":null,"abstract":"Let H be a separable infinite dimensional complex Hilbert space, and let L(H) denote the algebra of all bounded linear operators on H into itself. Given A, B ∈ L(H), define the generalized derivation δA, B ∈ L(L(H)) by δA, B(X) = AX - XB. An operator A ∈ L(H) is P-symmetric if AT = TA implies AT* = T* A for all T ∈ C1(H) (trace class operators). In this paper, we give a generalization of P-symmetric operators. We initiate the study of the pairs (A, B) of operators A, B ∈ L(H) such that R(δA, B) W* = R(δA, B) W*, where R(δA, B) W* denotes the ultraweak closure of the range of δA, B. Such pairs of operators are called generalized P-symmetric. We establish a characterization of those pairs of operators. Related properties of P-symmetric operators are also given.","PeriodicalId":38102,"journal":{"name":"Revista Colombiana de Matematicas","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Note on the Range of a Derivation\",\"authors\":\"Y. Bouhafsi, M. Ech-chad, A. Zouaki\",\"doi\":\"10.15446/recolma.v56n2.108371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let H be a separable infinite dimensional complex Hilbert space, and let L(H) denote the algebra of all bounded linear operators on H into itself. Given A, B ∈ L(H), define the generalized derivation δA, B ∈ L(L(H)) by δA, B(X) = AX - XB. An operator A ∈ L(H) is P-symmetric if AT = TA implies AT* = T* A for all T ∈ C1(H) (trace class operators). In this paper, we give a generalization of P-symmetric operators. We initiate the study of the pairs (A, B) of operators A, B ∈ L(H) such that R(δA, B) W* = R(δA, B) W*, where R(δA, B) W* denotes the ultraweak closure of the range of δA, B. Such pairs of operators are called generalized P-symmetric. We establish a characterization of those pairs of operators. Related properties of P-symmetric operators are also given.\",\"PeriodicalId\":38102,\"journal\":{\"name\":\"Revista Colombiana de Matematicas\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Colombiana de Matematicas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15446/recolma.v56n2.108371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Colombiana de Matematicas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/recolma.v56n2.108371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

设H是一个可分离的无限维复希尔伯特空间,设L(H)表示H上所有有界线性算子的代数。给定A, B∈L(H),定义广义导数δA, B∈L(L(H)): δA, B(X) = AX - XB。如果AT = TA意味着对于所有T∈C1(H)(跟踪类算子)AT* = T* A,则算子A∈L(H)是p对称的。本文给出了p对称算子的一个推广。我们研究了算子A, B∈L(H)的(A, B)对,使得R(δA, B) W* = R(δA, B) W*,其中R(δA, B) W*表示δA, B值域的超弱闭包。这种算子对称为广义p对称算子。我们建立了这些算子对的一个表征。给出了p对称算子的相关性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Note on the Range of a Derivation
Let H be a separable infinite dimensional complex Hilbert space, and let L(H) denote the algebra of all bounded linear operators on H into itself. Given A, B ∈ L(H), define the generalized derivation δA, B ∈ L(L(H)) by δA, B(X) = AX - XB. An operator A ∈ L(H) is P-symmetric if AT = TA implies AT* = T* A for all T ∈ C1(H) (trace class operators). In this paper, we give a generalization of P-symmetric operators. We initiate the study of the pairs (A, B) of operators A, B ∈ L(H) such that R(δA, B) W* = R(δA, B) W*, where R(δA, B) W* denotes the ultraweak closure of the range of δA, B. Such pairs of operators are called generalized P-symmetric. We establish a characterization of those pairs of operators. Related properties of P-symmetric operators are also given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista Colombiana de Matematicas
Revista Colombiana de Matematicas Mathematics-Mathematics (all)
CiteScore
0.60
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信