用大几何高分辨率多收集器电感耦合等离子体质谱仪测量铁同位素

IF 3.4 2区 化学 Q1 SPECTROSCOPY
Ming Li
{"title":"用大几何高分辨率多收集器电感耦合等离子体质谱仪测量铁同位素","authors":"Ming Li","doi":"10.46770/as.2022.111","DOIUrl":null,"url":null,"abstract":": High-precision and accurate Fe isotopic analyses are essential for various geological processes. In this study, Fe isotopic measurements were optimized on a large-geometry, high-resolution Nu Plasma 1700 MC-ICP-MS instrument, which can distinguish Ar-related interferences completely as opposed to other general-sized MC-ICP-MS instruments. Under the conditions of high mass resolution, complete separation of Ar-related interference can be achieved. We evaluated the type and intensity of all Ar-related interferences. The effects of the acid molarity, concentration mismatch, residual HCl, and matrix elements were also evaluated. The results demonstrate that the molarity of the acid, residual HCl, and Cr significantly affected the precision of the Fe isotopic measurements. Fe was purified by one-step column anion-exchange separation using the anion resin AG-MP-1M. The long-term external precisions of δ 56 Fe and δ 57 Fe were greater than ± 0.03‰ (2SD) and ± 0.06‰ (2SD), respectively. The Fe isotopic compositions of the five geological reference materials measured in this study agreed with previously published data, within uncertainties.","PeriodicalId":8642,"journal":{"name":"Atomic Spectroscopy","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Iron Isotopic Measurement Using Large-Geometry High-Resolution Multi-Collector Inductively Coupled Plasma Mass Spectrometer\",\"authors\":\"Ming Li\",\"doi\":\"10.46770/as.2022.111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": High-precision and accurate Fe isotopic analyses are essential for various geological processes. In this study, Fe isotopic measurements were optimized on a large-geometry, high-resolution Nu Plasma 1700 MC-ICP-MS instrument, which can distinguish Ar-related interferences completely as opposed to other general-sized MC-ICP-MS instruments. Under the conditions of high mass resolution, complete separation of Ar-related interference can be achieved. We evaluated the type and intensity of all Ar-related interferences. The effects of the acid molarity, concentration mismatch, residual HCl, and matrix elements were also evaluated. The results demonstrate that the molarity of the acid, residual HCl, and Cr significantly affected the precision of the Fe isotopic measurements. Fe was purified by one-step column anion-exchange separation using the anion resin AG-MP-1M. The long-term external precisions of δ 56 Fe and δ 57 Fe were greater than ± 0.03‰ (2SD) and ± 0.06‰ (2SD), respectively. The Fe isotopic compositions of the five geological reference materials measured in this study agreed with previously published data, within uncertainties.\",\"PeriodicalId\":8642,\"journal\":{\"name\":\"Atomic Spectroscopy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atomic Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.46770/as.2022.111\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atomic Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.46770/as.2022.111","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 2

摘要

:高精度和准确的铁同位素分析对各种地质过程至关重要。在这项研究中,Fe同位素测量是在一个大型几何结构、高分辨率Nu Plasma 1700 MC-ICP-MS仪器上进行优化的,与其他通用尺寸的MC-ICP-M仪器相比,该仪器可以完全区分与Ar相关的干扰。在高质量分辨率的条件下,可以实现Ar相关干扰的完全分离。我们评估了所有Ar相关干扰的类型和强度。还评估了酸摩尔浓度、浓度失配、残留HCl和基质元素的影响。结果表明,酸、残留HCl和Cr的摩尔浓度显著影响Fe同位素测量的精度。采用阴离子树脂AG-MP-1M,采用一步柱阴离子交换法对铁进行纯化。δ56Fe和δ57Fe的长期外精度分别大于±0.03‰(2SD)和±0.06‰(2SD)。本研究中测量的五种地质参考物质的Fe同位素组成与之前公布的数据一致,但存在不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Iron Isotopic Measurement Using Large-Geometry High-Resolution Multi-Collector Inductively Coupled Plasma Mass Spectrometer
: High-precision and accurate Fe isotopic analyses are essential for various geological processes. In this study, Fe isotopic measurements were optimized on a large-geometry, high-resolution Nu Plasma 1700 MC-ICP-MS instrument, which can distinguish Ar-related interferences completely as opposed to other general-sized MC-ICP-MS instruments. Under the conditions of high mass resolution, complete separation of Ar-related interference can be achieved. We evaluated the type and intensity of all Ar-related interferences. The effects of the acid molarity, concentration mismatch, residual HCl, and matrix elements were also evaluated. The results demonstrate that the molarity of the acid, residual HCl, and Cr significantly affected the precision of the Fe isotopic measurements. Fe was purified by one-step column anion-exchange separation using the anion resin AG-MP-1M. The long-term external precisions of δ 56 Fe and δ 57 Fe were greater than ± 0.03‰ (2SD) and ± 0.06‰ (2SD), respectively. The Fe isotopic compositions of the five geological reference materials measured in this study agreed with previously published data, within uncertainties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atomic Spectroscopy
Atomic Spectroscopy 物理-光谱学
CiteScore
5.30
自引率
14.70%
发文量
42
审稿时长
4.5 months
期刊介绍: The ATOMIC SPECTROSCOPY is a peer-reviewed international journal started in 1962 by Dr. Walter Slavin and now is published by Atomic Spectroscopy Press Limited (ASPL). It is intended for the rapid publication of both original articles and review articles in the fields of AAS, AFS, ICP-OES, ICP-MS, GD-MS, TIMS, SIMS, AMS, LIBS, XRF and related techniques. Manuscripts dealing with (i) instrumentation & fundamentals, (ii) methodology development & applications, and (iii) standard reference materials (SRMs) development can be submitted for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信