同调分析方法与Clique多项式方法的研究

IF 1.1 Q2 MATHEMATICS, APPLIED
S. Kumbinarasaiah, P. PreethamM.
{"title":"同调分析方法与Clique多项式方法的研究","authors":"S. Kumbinarasaiah, P. PreethamM.","doi":"10.22034/CMDE.2021.46473.1953","DOIUrl":null,"url":null,"abstract":"This paper generated the novel approach called the Clique polynomial method (CPM) using the Clique polynomials raised in graph theory. Non-linear initial value problems are converted into non-linear algebraic equations by discretion with suitable grid points in the current approach. We solved highly non-linear initial problems using the (HAM) Homotopy analysis method and CPM. Obtained results reveal that the present technique is better than HAM that is discussed through tables and simulations. Convergence analyses are reflected in terms of the theorem.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Study on Homotopy Analysis Method and Clique Polynomial Method\",\"authors\":\"S. Kumbinarasaiah, P. PreethamM.\",\"doi\":\"10.22034/CMDE.2021.46473.1953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper generated the novel approach called the Clique polynomial method (CPM) using the Clique polynomials raised in graph theory. Non-linear initial value problems are converted into non-linear algebraic equations by discretion with suitable grid points in the current approach. We solved highly non-linear initial problems using the (HAM) Homotopy analysis method and CPM. Obtained results reveal that the present technique is better than HAM that is discussed through tables and simulations. Convergence analyses are reflected in terms of the theorem.\",\"PeriodicalId\":44352,\"journal\":{\"name\":\"Computational Methods for Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods for Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/CMDE.2021.46473.1953\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2021.46473.1953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

本文利用图论中提出的Clique多项式生成了一种新的方法,称为Clique多项式法(CPM)。在当前的方法中,通过适当的网格点将非线性初值问题酌情转换为非线性代数方程。我们使用(HAM)同调分析方法和CPM解决了高度非线性的初始问题。所得结果表明,该方法优于通过表格和仿真讨论的HAM。收敛性分析反映在定理方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study on Homotopy Analysis Method and Clique Polynomial Method
This paper generated the novel approach called the Clique polynomial method (CPM) using the Clique polynomials raised in graph theory. Non-linear initial value problems are converted into non-linear algebraic equations by discretion with suitable grid points in the current approach. We solved highly non-linear initial problems using the (HAM) Homotopy analysis method and CPM. Obtained results reveal that the present technique is better than HAM that is discussed through tables and simulations. Convergence analyses are reflected in terms of the theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
27.30%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信