Blumberg超对数逻辑曲线的一些性质

Q2 Agricultural and Biological Sciences
R. Anguelov, N. Kyurkchiev, S. Markov
{"title":"Blumberg超对数逻辑曲线的一些性质","authors":"R. Anguelov, N. Kyurkchiev, S. Markov","doi":"10.11145/J.BIOMATH.2018.07.317","DOIUrl":null,"url":null,"abstract":"The paper considers the sigmoid function definedthrough the hyper-log-logistic model introduced by Blumberg. We study the Hausdorff distance of this sigmoid to the Heaviside function, which characterises the shape of switching from 0 to 1. Estimates of the Hausdorff distance in terms of the intrinsic growth rate are derived. We construct a family of recurrence generated sigmoidal functions based on the hyper-log-logistic function. Numerical illustrations are provided.","PeriodicalId":52247,"journal":{"name":"Biomath","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Some properties of the Blumberg's hyper-log-logistic curve\",\"authors\":\"R. Anguelov, N. Kyurkchiev, S. Markov\",\"doi\":\"10.11145/J.BIOMATH.2018.07.317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper considers the sigmoid function definedthrough the hyper-log-logistic model introduced by Blumberg. We study the Hausdorff distance of this sigmoid to the Heaviside function, which characterises the shape of switching from 0 to 1. Estimates of the Hausdorff distance in terms of the intrinsic growth rate are derived. We construct a family of recurrence generated sigmoidal functions based on the hyper-log-logistic function. Numerical illustrations are provided.\",\"PeriodicalId\":52247,\"journal\":{\"name\":\"Biomath\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomath\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11145/J.BIOMATH.2018.07.317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomath","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11145/J.BIOMATH.2018.07.317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 27

摘要

本文考虑了由Blumberg引入的超对数逻辑模型定义的s型函数。我们研究了这个s型曲线到Heaviside函数的Hausdorff距离,它具有从0切换到1的形状。用固有增长率来估计豪斯多夫距离。在超对数逻辑函数的基础上构造了一类递归生成的s型函数。给出了数值说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some properties of the Blumberg's hyper-log-logistic curve
The paper considers the sigmoid function definedthrough the hyper-log-logistic model introduced by Blumberg. We study the Hausdorff distance of this sigmoid to the Heaviside function, which characterises the shape of switching from 0 to 1. Estimates of the Hausdorff distance in terms of the intrinsic growth rate are derived. We construct a family of recurrence generated sigmoidal functions based on the hyper-log-logistic function. Numerical illustrations are provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomath
Biomath Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
2.20
自引率
0.00%
发文量
6
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信