强吸收慢扩散方程的界面行为:中间渐近性质

IF 2.3 4区 数学 Q1 MATHEMATICS, APPLIED
J. R. King, G. Richardson, J. Foster
{"title":"强吸收慢扩散方程的界面行为:中间渐近性质","authors":"J. R. King, G. Richardson, J. Foster","doi":"10.1017/S0956792523000098","DOIUrl":null,"url":null,"abstract":"Abstract The dynamics of interfaces in slow diffusion equations with strong absorption are studied. Asymptotic methods are used to give descriptions of the behaviour local to a comprehensive range of possible singular events that can occur in any evolution. These events are: when an interface changes its direction of propagation (reversing and anti-reversing), when an interface detaches from an absorbing obstacle (detaching), when two interfaces are formed by film rupture (touchdown) and when the solution undergoes extinction. Our account of extinction and self-similar reversing and anti-reversing is built upon previous work; results on non-self-similar reversing and anti-reversing and on the various types of detachment and touchdown are developed from scratch. In all cases, verification of the asymptotic results against numerical solutions to the full PDE is provided. Self-similar solutions, both of the full equation and of its asymptotic limits, play a central role in the analysis.","PeriodicalId":51046,"journal":{"name":"European Journal of Applied Mathematics","volume":"34 1","pages":"1099 - 1132"},"PeriodicalIF":2.3000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interface behaviour of the slow diffusion equation with strong absorption: Intermediate-asymptotic properties\",\"authors\":\"J. R. King, G. Richardson, J. Foster\",\"doi\":\"10.1017/S0956792523000098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The dynamics of interfaces in slow diffusion equations with strong absorption are studied. Asymptotic methods are used to give descriptions of the behaviour local to a comprehensive range of possible singular events that can occur in any evolution. These events are: when an interface changes its direction of propagation (reversing and anti-reversing), when an interface detaches from an absorbing obstacle (detaching), when two interfaces are formed by film rupture (touchdown) and when the solution undergoes extinction. Our account of extinction and self-similar reversing and anti-reversing is built upon previous work; results on non-self-similar reversing and anti-reversing and on the various types of detachment and touchdown are developed from scratch. In all cases, verification of the asymptotic results against numerical solutions to the full PDE is provided. Self-similar solutions, both of the full equation and of its asymptotic limits, play a central role in the analysis.\",\"PeriodicalId\":51046,\"journal\":{\"name\":\"European Journal of Applied Mathematics\",\"volume\":\"34 1\",\"pages\":\"1099 - 1132\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S0956792523000098\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0956792523000098","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要研究了强吸收慢扩散方程中界面的动力学问题。渐近方法用于描述任何进化中可能发生的一系列可能奇异事件的局部行为。这些事件是:当一个界面改变其传播方向时(反转和反反转),当一个接口从吸收障碍物上分离时(分离),当两个界面通过薄膜破裂形成时(触地),以及当溶液经历消光时。我们对灭绝和自我相似的逆转和反逆转的描述是建立在以前的工作基础上的;结果非自相似翻转和反翻转以及各种类型的脱离和触地都是从头开始发展起来的。在所有情况下,提供了渐近结果相对于全PDE的数值解的验证。全方程及其渐近极限的自相似解在分析中起着核心作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interface behaviour of the slow diffusion equation with strong absorption: Intermediate-asymptotic properties
Abstract The dynamics of interfaces in slow diffusion equations with strong absorption are studied. Asymptotic methods are used to give descriptions of the behaviour local to a comprehensive range of possible singular events that can occur in any evolution. These events are: when an interface changes its direction of propagation (reversing and anti-reversing), when an interface detaches from an absorbing obstacle (detaching), when two interfaces are formed by film rupture (touchdown) and when the solution undergoes extinction. Our account of extinction and self-similar reversing and anti-reversing is built upon previous work; results on non-self-similar reversing and anti-reversing and on the various types of detachment and touchdown are developed from scratch. In all cases, verification of the asymptotic results against numerical solutions to the full PDE is provided. Self-similar solutions, both of the full equation and of its asymptotic limits, play a central role in the analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
31
审稿时长
>12 weeks
期刊介绍: Since 2008 EJAM surveys have been expanded to cover Applied and Industrial Mathematics. Coverage of the journal has been strengthened in probabilistic applications, while still focusing on those areas of applied mathematics inspired by real-world applications, and at the same time fostering the development of theoretical methods with a broad range of applicability. Survey papers contain reviews of emerging areas of mathematics, either in core areas or with relevance to users in industry and other disciplines. Research papers may be in any area of applied mathematics, with special emphasis on new mathematical ideas, relevant to modelling and analysis in modern science and technology, and the development of interesting mathematical methods of wide applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信