Maja Arsic, C. O’Sullivan, A. Wasson, D. Antille, W. Clarke
{"title":"超越废物转化为能源:生物能源可以通过将循环经济与净零目标相结合来推动澳大利亚可持续农业","authors":"Maja Arsic, C. O’Sullivan, A. Wasson, D. Antille, W. Clarke","doi":"10.31025/2611-4135/2023.17278","DOIUrl":null,"url":null,"abstract":"The race to meet net zero targets by 2050, while rapidly transitioning to a circular economy (CE) within the next decade, is shaping strategic Australian sustainability policy. While the success of integrating CE concepts relies on coordinating system-wide change, policies and strategies are still evolving under the traditional silos of waste and energy management. This presents multiple barriers to critical sectors, such as agriculture, which aims to become an $AUD100 billion industry by 2030. Agri-food systems face the challenge to meet growing global food demand, expected to increase by 70% by 2050, while decreasing emissions, resource use and waste production. Agriculture plays essential push and pull roles in meeting net zero targets and in developing a truly CE. Bioenergy, a critical part of the renewable circular bioeconomy, sits at the intersection of net zero and CE by producing renewable energy and recovering bioresources from waste biomass. By integrating agricultural end-users as key stakeholders, bioenergy can shift from a waste-to-energy process to a multi-resource generating process. These policy areas could be integrated via a similar approach to the Australian National Agricultural Innovation Policy Statement, with the goal of supporting agricultural production, while reducing emissions and maximising renewable resource use efficiency.","PeriodicalId":44191,"journal":{"name":"Detritus","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beyond waste-to-energy: Bioenergy can drive sustainable Australian agriculture by integrating circular economy with net zero ambitions\",\"authors\":\"Maja Arsic, C. O’Sullivan, A. Wasson, D. Antille, W. Clarke\",\"doi\":\"10.31025/2611-4135/2023.17278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The race to meet net zero targets by 2050, while rapidly transitioning to a circular economy (CE) within the next decade, is shaping strategic Australian sustainability policy. While the success of integrating CE concepts relies on coordinating system-wide change, policies and strategies are still evolving under the traditional silos of waste and energy management. This presents multiple barriers to critical sectors, such as agriculture, which aims to become an $AUD100 billion industry by 2030. Agri-food systems face the challenge to meet growing global food demand, expected to increase by 70% by 2050, while decreasing emissions, resource use and waste production. Agriculture plays essential push and pull roles in meeting net zero targets and in developing a truly CE. Bioenergy, a critical part of the renewable circular bioeconomy, sits at the intersection of net zero and CE by producing renewable energy and recovering bioresources from waste biomass. By integrating agricultural end-users as key stakeholders, bioenergy can shift from a waste-to-energy process to a multi-resource generating process. These policy areas could be integrated via a similar approach to the Australian National Agricultural Innovation Policy Statement, with the goal of supporting agricultural production, while reducing emissions and maximising renewable resource use efficiency.\",\"PeriodicalId\":44191,\"journal\":{\"name\":\"Detritus\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Detritus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31025/2611-4135/2023.17278\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Detritus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31025/2611-4135/2023.17278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Beyond waste-to-energy: Bioenergy can drive sustainable Australian agriculture by integrating circular economy with net zero ambitions
The race to meet net zero targets by 2050, while rapidly transitioning to a circular economy (CE) within the next decade, is shaping strategic Australian sustainability policy. While the success of integrating CE concepts relies on coordinating system-wide change, policies and strategies are still evolving under the traditional silos of waste and energy management. This presents multiple barriers to critical sectors, such as agriculture, which aims to become an $AUD100 billion industry by 2030. Agri-food systems face the challenge to meet growing global food demand, expected to increase by 70% by 2050, while decreasing emissions, resource use and waste production. Agriculture plays essential push and pull roles in meeting net zero targets and in developing a truly CE. Bioenergy, a critical part of the renewable circular bioeconomy, sits at the intersection of net zero and CE by producing renewable energy and recovering bioresources from waste biomass. By integrating agricultural end-users as key stakeholders, bioenergy can shift from a waste-to-energy process to a multi-resource generating process. These policy areas could be integrated via a similar approach to the Australian National Agricultural Innovation Policy Statement, with the goal of supporting agricultural production, while reducing emissions and maximising renewable resource use efficiency.