{"title":"正弯曲流形中曲率流的Li-Yau梯度估计","authors":"Paul Bryan, Heiko Kroner, Julian Scheuer","doi":"10.4310/MAA.2020.v27.n4.a2","DOIUrl":null,"url":null,"abstract":"We prove differential Harnack inequalities for flows of strictly convex hypersurfaces by powers $p$, $0<p<1$, of the mean curvature in Einstein manifolds with a positive lower bound on the sectional curvature. We assume that this lower bound is sufficiently large compared to the derivatives of the curvature tensor of the ambient space and that the mean curvature of the initial hypersurface is sufficiently large compared to the ambient geometry. We also obtain some new Harnack inequalities for more general curvature flows in the sphere, as well as a monotonicity estimate for the mean curvature flow in non-negatively curved, locally symmetric spaces.","PeriodicalId":18467,"journal":{"name":"Methods and applications of analysis","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2019-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Li–Yau gradient estimates for curvature flows in positively curved manifolds\",\"authors\":\"Paul Bryan, Heiko Kroner, Julian Scheuer\",\"doi\":\"10.4310/MAA.2020.v27.n4.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove differential Harnack inequalities for flows of strictly convex hypersurfaces by powers $p$, $0<p<1$, of the mean curvature in Einstein manifolds with a positive lower bound on the sectional curvature. We assume that this lower bound is sufficiently large compared to the derivatives of the curvature tensor of the ambient space and that the mean curvature of the initial hypersurface is sufficiently large compared to the ambient geometry. We also obtain some new Harnack inequalities for more general curvature flows in the sphere, as well as a monotonicity estimate for the mean curvature flow in non-negatively curved, locally symmetric spaces.\",\"PeriodicalId\":18467,\"journal\":{\"name\":\"Methods and applications of analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods and applications of analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/MAA.2020.v27.n4.a2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and applications of analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/MAA.2020.v27.n4.a2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}