{"title":"Langlands本地匹配$P$-Adiqueet Kisin戒指","authors":"P. Colmez, Gabriel Dospinescu, Wiesława Nizioł","doi":"10.4064/aa220520-24-4","DOIUrl":null,"url":null,"abstract":"We use a ${\\mathcal B}$-adic completion and the $p$-adic local Langlands correspondence for ${\\mathrm {GL}}_2({\\mathbf Q}_p )$ to give a construction of Kisin's rings and the attached universal Galois representations (in dimension 2 and for ${\\mathbf Q}_p$) directly from the classical Langlands correspondence. This gives, in particular, a uniform proof of the geometric Breuil-M\\'ezard conjecture in the supercuspidal case.","PeriodicalId":37888,"journal":{"name":"Acta Arithmetica","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correspondance de Langlands locale $p$-adique\\net anneaux de Kisin\",\"authors\":\"P. Colmez, Gabriel Dospinescu, Wiesława Nizioł\",\"doi\":\"10.4064/aa220520-24-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use a ${\\\\mathcal B}$-adic completion and the $p$-adic local Langlands correspondence for ${\\\\mathrm {GL}}_2({\\\\mathbf Q}_p )$ to give a construction of Kisin's rings and the attached universal Galois representations (in dimension 2 and for ${\\\\mathbf Q}_p$) directly from the classical Langlands correspondence. This gives, in particular, a uniform proof of the geometric Breuil-M\\\\'ezard conjecture in the supercuspidal case.\",\"PeriodicalId\":37888,\"journal\":{\"name\":\"Acta Arithmetica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Arithmetica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/aa220520-24-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Arithmetica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/aa220520-24-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们使用${\mathrm{GL}}_2({\mathbf Q}_p)$的${\math cal B}$adic完备和$p$adic局部Langlands对应关系,直接从经典Langlands相应关系中给出Kisin环的构造和所附的通用Galois表示(在维度2中和对于${\mathebf Q}_p$)。这特别给出了在超悬铃木情况下几何Breuil-M’zard猜想的统一证明。
Correspondance de Langlands locale $p$-adique
et anneaux de Kisin
We use a ${\mathcal B}$-adic completion and the $p$-adic local Langlands correspondence for ${\mathrm {GL}}_2({\mathbf Q}_p )$ to give a construction of Kisin's rings and the attached universal Galois representations (in dimension 2 and for ${\mathbf Q}_p$) directly from the classical Langlands correspondence. This gives, in particular, a uniform proof of the geometric Breuil-M\'ezard conjecture in the supercuspidal case.