M. Ashrafuzzaman, Cerdà Artemi, F. Santos, Luísa Schmidt
{"title":"孟加拉国西南沿海地区当前和未来的盐度入侵","authors":"M. Ashrafuzzaman, Cerdà Artemi, F. Santos, Luísa Schmidt","doi":"10.3389/sjss.2022.10017","DOIUrl":null,"url":null,"abstract":"The southwestern coastal regions of Bangladesh (SWCRB) are highly exposed to saltwater intrusions brought about through cyclones and storm surges. These salinity intrusions are contributing to soil and water salinity in the coastal areas. This study aimed to determine the impact of these salinity intrusions on the quality of water and soil in three vulnerable coastal areas. In this investigation, water and soil samples were collected and analysed for pH, electrical conductivity (EC) and other trace elements. The analysis found many of the parameters to be higher than the recommended values. The study found that in soil samples there was a significant correlation between OM and ECe dS/m, as well as K and TN; and a highly significant correlation between TN and OM. This study further examined the historical salinity data at low and high tides to determine any patterns occurring alongside storm surges and cyclones. Water salinity statistics were obtained from the three locations of the Bangladesh Water Development Board (BWDB), which neighbours the study area. A Digital Evaluation Model (DEM) predicts the salinity induced by storm gushes in the corresponding impacted zones. Lastly, the study compared projections for future storm surges at current and predicted sea levels. Potential storm gushes circumstances from 1 to 9 m can impact up to 33% of the nation and 97% of the Shyamnagar Upazila. The occurrence of cyclone-related storms will increase and make cultivation and settlement in the region difficult. The predicted sea-level rises and saltwater contamination will intensify the adverse effects of salinity.","PeriodicalId":43464,"journal":{"name":"Spanish Journal of Soil Science","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2022-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Current and Future Salinity Intrusion in the South-Western Coastal Region of Bangladesh\",\"authors\":\"M. Ashrafuzzaman, Cerdà Artemi, F. Santos, Luísa Schmidt\",\"doi\":\"10.3389/sjss.2022.10017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The southwestern coastal regions of Bangladesh (SWCRB) are highly exposed to saltwater intrusions brought about through cyclones and storm surges. These salinity intrusions are contributing to soil and water salinity in the coastal areas. This study aimed to determine the impact of these salinity intrusions on the quality of water and soil in three vulnerable coastal areas. In this investigation, water and soil samples were collected and analysed for pH, electrical conductivity (EC) and other trace elements. The analysis found many of the parameters to be higher than the recommended values. The study found that in soil samples there was a significant correlation between OM and ECe dS/m, as well as K and TN; and a highly significant correlation between TN and OM. This study further examined the historical salinity data at low and high tides to determine any patterns occurring alongside storm surges and cyclones. Water salinity statistics were obtained from the three locations of the Bangladesh Water Development Board (BWDB), which neighbours the study area. A Digital Evaluation Model (DEM) predicts the salinity induced by storm gushes in the corresponding impacted zones. Lastly, the study compared projections for future storm surges at current and predicted sea levels. Potential storm gushes circumstances from 1 to 9 m can impact up to 33% of the nation and 97% of the Shyamnagar Upazila. The occurrence of cyclone-related storms will increase and make cultivation and settlement in the region difficult. The predicted sea-level rises and saltwater contamination will intensify the adverse effects of salinity.\",\"PeriodicalId\":43464,\"journal\":{\"name\":\"Spanish Journal of Soil Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spanish Journal of Soil Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/sjss.2022.10017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spanish Journal of Soil Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/sjss.2022.10017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Current and Future Salinity Intrusion in the South-Western Coastal Region of Bangladesh
The southwestern coastal regions of Bangladesh (SWCRB) are highly exposed to saltwater intrusions brought about through cyclones and storm surges. These salinity intrusions are contributing to soil and water salinity in the coastal areas. This study aimed to determine the impact of these salinity intrusions on the quality of water and soil in three vulnerable coastal areas. In this investigation, water and soil samples were collected and analysed for pH, electrical conductivity (EC) and other trace elements. The analysis found many of the parameters to be higher than the recommended values. The study found that in soil samples there was a significant correlation between OM and ECe dS/m, as well as K and TN; and a highly significant correlation between TN and OM. This study further examined the historical salinity data at low and high tides to determine any patterns occurring alongside storm surges and cyclones. Water salinity statistics were obtained from the three locations of the Bangladesh Water Development Board (BWDB), which neighbours the study area. A Digital Evaluation Model (DEM) predicts the salinity induced by storm gushes in the corresponding impacted zones. Lastly, the study compared projections for future storm surges at current and predicted sea levels. Potential storm gushes circumstances from 1 to 9 m can impact up to 33% of the nation and 97% of the Shyamnagar Upazila. The occurrence of cyclone-related storms will increase and make cultivation and settlement in the region difficult. The predicted sea-level rises and saltwater contamination will intensify the adverse effects of salinity.
期刊介绍:
The Spanish Journal of Soil Science (SJSS) is a peer-reviewed journal with open access for the publication of Soil Science research, which is published every four months. This publication welcomes works from all parts of the world and different geographic areas. It aims to publish original, innovative, and high-quality scientific papers related to field and laboratory research on all basic and applied aspects of Soil Science. The journal is also interested in interdisciplinary studies linked to soil research, short communications presenting new findings and applications, and invited state of art reviews. The journal focuses on all the different areas of Soil Science represented by the Spanish Society of Soil Science: soil genesis, morphology and micromorphology, physics, chemistry, biology, mineralogy, biochemistry and its functions, classification, survey, and soil information systems; soil fertility and plant nutrition, hydrology and geomorphology; soil evaluation and land use planning; soil protection and conservation; soil degradation and remediation; soil quality; soil-plant relationships; soils and land use change; sustainability of ecosystems; soils and environmental quality; methods of soil analysis; pedometrics; new techniques and soil education. Other fields with growing interest include: digital soil mapping, soil nanotechnology, the modelling of biological and biochemical processes, mechanisms and processes responsible for the mobilization and immobilization of nutrients, organic matter stabilization, biogeochemical nutrient cycles, the influence of climatic change on soil processes and soil-plant relationships, carbon sequestration, and the role of soils in climatic change and ecological and environmental processes.