CAT(0)空间上局部紧群的抽象群作用

Pub Date : 2020-09-22 DOI:10.4171/ggd/677
Philip Moller, Olga Varghese
{"title":"CAT(0)空间上局部紧群的抽象群作用","authors":"Philip Moller, Olga Varghese","doi":"10.4171/ggd/677","DOIUrl":null,"url":null,"abstract":"We study abstract group actions of locally compact Hausdorff groups on CAT(0) spaces. Under mild assumptions on the action we show that it is continuous or has a global fixed point. This mirrors results by Dudley and Morris-Nickolas for actions on trees. As a consequence we obtain a geometric proof for the fact that any abstract group homomorphism from a locally compact Hausdorff group into a torsion free CAT(0) group is continuous.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Abstract group actions of locally compact groups on CAT(0) spaces\",\"authors\":\"Philip Moller, Olga Varghese\",\"doi\":\"10.4171/ggd/677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study abstract group actions of locally compact Hausdorff groups on CAT(0) spaces. Under mild assumptions on the action we show that it is continuous or has a global fixed point. This mirrors results by Dudley and Morris-Nickolas for actions on trees. As a consequence we obtain a geometric proof for the fact that any abstract group homomorphism from a locally compact Hausdorff group into a torsion free CAT(0) group is continuous.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/ggd/677\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ggd/677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

研究了CAT(0)空间上局部紧Hausdorff群的抽象群作用。在对作用的温和假设下,我们证明了它是连续的或有一个全局不动点。这反映了达德利和莫里斯-尼古拉斯对树木行为的研究结果。由此,我们得到了从局部紧Hausdorff群到无扭转CAT(0)群的任何抽象群同态是连续的一个几何证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Abstract group actions of locally compact groups on CAT(0) spaces
We study abstract group actions of locally compact Hausdorff groups on CAT(0) spaces. Under mild assumptions on the action we show that it is continuous or has a global fixed point. This mirrors results by Dudley and Morris-Nickolas for actions on trees. As a consequence we obtain a geometric proof for the fact that any abstract group homomorphism from a locally compact Hausdorff group into a torsion free CAT(0) group is continuous.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信