Justin Stadler, Harrison Schurr, D. Doyle, Lucas Garmo, B. Srinageshwar, Marc R. Spencer, Robert B Petersen, G. Dunbar, J. Rossignol
{"title":"大鼠缺血性脑卒中后反应性星形胶质细胞的时间分布","authors":"Justin Stadler, Harrison Schurr, D. Doyle, Lucas Garmo, B. Srinageshwar, Marc R. Spencer, Robert B Petersen, G. Dunbar, J. Rossignol","doi":"10.3390/neuroglia3030007","DOIUrl":null,"url":null,"abstract":"Ischemic stroke is a debilitating neurological disease most commonly resulting from an occlusion within the cerebral vasculature. Ischemia/reperfusion injury is oftentimes a consequence of stroke, characterized by oxidative stress, neuroinflammation, and the activation of surrounding glial cells following restoration of blood supply. Astrocytes are regarded as the most prominent glial cell in the brain and, under pathologic conditions, display, among other pathologies, activated (GFAP) relatively proportional to the degree of reactivity. The primary objective of the study was to determine the temporal profile of astrocyte reactivity following ischemic stroke. Thirty-four Sprague-Dawley rats were assigned to surgery consisting of either 90-min middle cerebral artery occlusion (MCAo) or sham surgery. Animals were sub-grouped by postoperative euthanization day; 2 days (n = 10), 4 days (n = 11), and 7 days (n = 13). Fluorescence microscopy and densitometry were utilized to quantify GFAP immunoreactivity, which indicated a non-linear relationship following ischemia/reperfusion. Results demonstrated substantially higher GFAP levels in MCAo groups than in sham, with peak GFAP reactivity being shown in the brains of rats euthanized on day 4. These findings are applicable to future research, especially in the investigation of interventions that target reactive astrocytes following ischemic injury.","PeriodicalId":74275,"journal":{"name":"Neuroglia (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Temporal Profile of Reactive Astrocytes after Ischemic Stroke in Rats\",\"authors\":\"Justin Stadler, Harrison Schurr, D. Doyle, Lucas Garmo, B. Srinageshwar, Marc R. Spencer, Robert B Petersen, G. Dunbar, J. Rossignol\",\"doi\":\"10.3390/neuroglia3030007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ischemic stroke is a debilitating neurological disease most commonly resulting from an occlusion within the cerebral vasculature. Ischemia/reperfusion injury is oftentimes a consequence of stroke, characterized by oxidative stress, neuroinflammation, and the activation of surrounding glial cells following restoration of blood supply. Astrocytes are regarded as the most prominent glial cell in the brain and, under pathologic conditions, display, among other pathologies, activated (GFAP) relatively proportional to the degree of reactivity. The primary objective of the study was to determine the temporal profile of astrocyte reactivity following ischemic stroke. Thirty-four Sprague-Dawley rats were assigned to surgery consisting of either 90-min middle cerebral artery occlusion (MCAo) or sham surgery. Animals were sub-grouped by postoperative euthanization day; 2 days (n = 10), 4 days (n = 11), and 7 days (n = 13). Fluorescence microscopy and densitometry were utilized to quantify GFAP immunoreactivity, which indicated a non-linear relationship following ischemia/reperfusion. Results demonstrated substantially higher GFAP levels in MCAo groups than in sham, with peak GFAP reactivity being shown in the brains of rats euthanized on day 4. These findings are applicable to future research, especially in the investigation of interventions that target reactive astrocytes following ischemic injury.\",\"PeriodicalId\":74275,\"journal\":{\"name\":\"Neuroglia (Basel, Switzerland)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroglia (Basel, Switzerland)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/neuroglia3030007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroglia (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/neuroglia3030007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Temporal Profile of Reactive Astrocytes after Ischemic Stroke in Rats
Ischemic stroke is a debilitating neurological disease most commonly resulting from an occlusion within the cerebral vasculature. Ischemia/reperfusion injury is oftentimes a consequence of stroke, characterized by oxidative stress, neuroinflammation, and the activation of surrounding glial cells following restoration of blood supply. Astrocytes are regarded as the most prominent glial cell in the brain and, under pathologic conditions, display, among other pathologies, activated (GFAP) relatively proportional to the degree of reactivity. The primary objective of the study was to determine the temporal profile of astrocyte reactivity following ischemic stroke. Thirty-four Sprague-Dawley rats were assigned to surgery consisting of either 90-min middle cerebral artery occlusion (MCAo) or sham surgery. Animals were sub-grouped by postoperative euthanization day; 2 days (n = 10), 4 days (n = 11), and 7 days (n = 13). Fluorescence microscopy and densitometry were utilized to quantify GFAP immunoreactivity, which indicated a non-linear relationship following ischemia/reperfusion. Results demonstrated substantially higher GFAP levels in MCAo groups than in sham, with peak GFAP reactivity being shown in the brains of rats euthanized on day 4. These findings are applicable to future research, especially in the investigation of interventions that target reactive astrocytes following ischemic injury.