Charles Haskell, Nicolas Montagne, C. Douthe, O. Baverel, C. Fivet
{"title":"具有各向异性截面的弹性测地网格壳的生成","authors":"Charles Haskell, Nicolas Montagne, C. Douthe, O. Baverel, C. Fivet","doi":"10.1177/09560599211064099","DOIUrl":null,"url":null,"abstract":"Geodesic gridshells are shell structures made of continuous elements following geodesic lines. Their properties ease the use of beams with anisotropic cross-sections by avoiding bending about their strong axis. However, such bending may arise when flattening arbitrary geodesic grids, which forbids their initial assembly on the ground. This study provides a process to design elastic geodesic gridshells, that is, gridshells that minimise bending moments in both formed and near-flat configurations. The generation process first brings a target geodesic network onto a plane by maintaining arc lengths. The flat mesh is then relaxed to minimise its main curvatures and hence bending moments in its members. The result is an elastic geodesic gridshell that can be assembled flat on the ground and then lifted up into its target surface. The method is applied to the design of six geodesic gridshells made of reclaimed skis.","PeriodicalId":34964,"journal":{"name":"International Journal of Space Structures","volume":"36 1","pages":"294 - 306"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Generation of elastic geodesic gridshells with anisotropic cross sections\",\"authors\":\"Charles Haskell, Nicolas Montagne, C. Douthe, O. Baverel, C. Fivet\",\"doi\":\"10.1177/09560599211064099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Geodesic gridshells are shell structures made of continuous elements following geodesic lines. Their properties ease the use of beams with anisotropic cross-sections by avoiding bending about their strong axis. However, such bending may arise when flattening arbitrary geodesic grids, which forbids their initial assembly on the ground. This study provides a process to design elastic geodesic gridshells, that is, gridshells that minimise bending moments in both formed and near-flat configurations. The generation process first brings a target geodesic network onto a plane by maintaining arc lengths. The flat mesh is then relaxed to minimise its main curvatures and hence bending moments in its members. The result is an elastic geodesic gridshell that can be assembled flat on the ground and then lifted up into its target surface. The method is applied to the design of six geodesic gridshells made of reclaimed skis.\",\"PeriodicalId\":34964,\"journal\":{\"name\":\"International Journal of Space Structures\",\"volume\":\"36 1\",\"pages\":\"294 - 306\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Space Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/09560599211064099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Space Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09560599211064099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
Generation of elastic geodesic gridshells with anisotropic cross sections
Geodesic gridshells are shell structures made of continuous elements following geodesic lines. Their properties ease the use of beams with anisotropic cross-sections by avoiding bending about their strong axis. However, such bending may arise when flattening arbitrary geodesic grids, which forbids their initial assembly on the ground. This study provides a process to design elastic geodesic gridshells, that is, gridshells that minimise bending moments in both formed and near-flat configurations. The generation process first brings a target geodesic network onto a plane by maintaining arc lengths. The flat mesh is then relaxed to minimise its main curvatures and hence bending moments in its members. The result is an elastic geodesic gridshell that can be assembled flat on the ground and then lifted up into its target surface. The method is applied to the design of six geodesic gridshells made of reclaimed skis.
期刊介绍:
The aim of the journal is to provide an international forum for the interchange of information on all aspects of analysis, design and construction of space structures. The scope of the journal encompasses structures such as single-, double- and multi-layer grids, barrel vaults, domes, towers, folded plates, radar dishes, tensegrity structures, stressed skin assemblies, foldable structures, pneumatic systems and cable arrangements. No limitation on the type of material is imposed and the scope includes structures constructed in steel, aluminium, timber, concrete, plastics, paperboard and fabric.