膨胀的Kähler-Ricci孤子从Kähler锥体中出来

IF 1.3 1区 数学 Q1 MATHEMATICS
Ronan J. Conlon, Alix Deruelle
{"title":"膨胀的Kähler-Ricci孤子从Kähler锥体中出来","authors":"Ronan J. Conlon, Alix Deruelle","doi":"10.4310/jdg/1589853627","DOIUrl":null,"url":null,"abstract":"We give necessary and sufficient conditions for a Kähler equivariant resolution of a Kähler cone, with the resolution satisfying one of a number of auxiliary conditions, to admit a unique asymptotically conical (AC) expanding gradient Kähler-Ricci soliton. In particular, it follows that for any n ∈ N0 and for L a negative line bundle over a compact Kähler manifold D, the total space of the vector bundle L⊕(n+1) admits a unique AC expanding gradient Kähler-Ricci soliton with soliton vector field a positive multiple of the Euler vector field if and only if c1(KD⊗(L)) > 0. This generalises the examples already known in the literature. We further prove a general uniqueness result and show that the space of certain AC expanding gradient Kähler-Ricci solitons on C with positive curvature operator on (1, 1)-forms is path-connected.","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Expanding Kähler–Ricci solitons coming out of Kähler cones\",\"authors\":\"Ronan J. Conlon, Alix Deruelle\",\"doi\":\"10.4310/jdg/1589853627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give necessary and sufficient conditions for a Kähler equivariant resolution of a Kähler cone, with the resolution satisfying one of a number of auxiliary conditions, to admit a unique asymptotically conical (AC) expanding gradient Kähler-Ricci soliton. In particular, it follows that for any n ∈ N0 and for L a negative line bundle over a compact Kähler manifold D, the total space of the vector bundle L⊕(n+1) admits a unique AC expanding gradient Kähler-Ricci soliton with soliton vector field a positive multiple of the Euler vector field if and only if c1(KD⊗(L)) > 0. This generalises the examples already known in the literature. We further prove a general uniqueness result and show that the space of certain AC expanding gradient Kähler-Ricci solitons on C with positive curvature operator on (1, 1)-forms is path-connected.\",\"PeriodicalId\":15642,\"journal\":{\"name\":\"Journal of Differential Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jdg/1589853627\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jdg/1589853627","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 17

摘要

给出了Kähler锥的Kähler等变分辨率的充分必要条件,该分辨率满足若干辅助条件之一,从而允许唯一渐近圆锥(AC)展开梯度Kähler-Ricci孤子存在。特别地,对于任意n∈N0,对于紧致Kähler流形D上的负线束L⊕(n+1)的总空间,当且仅当c1(KD⊗(L)) > 0时,存在唯一的AC膨胀梯度Kähler-Ricci孤子,且孤子向量场为欧拉向量场的正倍。这概括了文献中已知的例子。进一步证明了C上具有正曲率算子的AC展开梯度Kähler-Ricci孤子在(1,1)-型上的空间是路径连通的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Expanding Kähler–Ricci solitons coming out of Kähler cones
We give necessary and sufficient conditions for a Kähler equivariant resolution of a Kähler cone, with the resolution satisfying one of a number of auxiliary conditions, to admit a unique asymptotically conical (AC) expanding gradient Kähler-Ricci soliton. In particular, it follows that for any n ∈ N0 and for L a negative line bundle over a compact Kähler manifold D, the total space of the vector bundle L⊕(n+1) admits a unique AC expanding gradient Kähler-Ricci soliton with soliton vector field a positive multiple of the Euler vector field if and only if c1(KD⊗(L)) > 0. This generalises the examples already known in the literature. We further prove a general uniqueness result and show that the space of certain AC expanding gradient Kähler-Ricci solitons on C with positive curvature operator on (1, 1)-forms is path-connected.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信