{"title":"膨胀的Kähler-Ricci孤子从Kähler锥体中出来","authors":"Ronan J. Conlon, Alix Deruelle","doi":"10.4310/jdg/1589853627","DOIUrl":null,"url":null,"abstract":"We give necessary and sufficient conditions for a Kähler equivariant resolution of a Kähler cone, with the resolution satisfying one of a number of auxiliary conditions, to admit a unique asymptotically conical (AC) expanding gradient Kähler-Ricci soliton. In particular, it follows that for any n ∈ N0 and for L a negative line bundle over a compact Kähler manifold D, the total space of the vector bundle L⊕(n+1) admits a unique AC expanding gradient Kähler-Ricci soliton with soliton vector field a positive multiple of the Euler vector field if and only if c1(KD⊗(L)) > 0. This generalises the examples already known in the literature. We further prove a general uniqueness result and show that the space of certain AC expanding gradient Kähler-Ricci solitons on C with positive curvature operator on (1, 1)-forms is path-connected.","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Expanding Kähler–Ricci solitons coming out of Kähler cones\",\"authors\":\"Ronan J. Conlon, Alix Deruelle\",\"doi\":\"10.4310/jdg/1589853627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give necessary and sufficient conditions for a Kähler equivariant resolution of a Kähler cone, with the resolution satisfying one of a number of auxiliary conditions, to admit a unique asymptotically conical (AC) expanding gradient Kähler-Ricci soliton. In particular, it follows that for any n ∈ N0 and for L a negative line bundle over a compact Kähler manifold D, the total space of the vector bundle L⊕(n+1) admits a unique AC expanding gradient Kähler-Ricci soliton with soliton vector field a positive multiple of the Euler vector field if and only if c1(KD⊗(L)) > 0. This generalises the examples already known in the literature. We further prove a general uniqueness result and show that the space of certain AC expanding gradient Kähler-Ricci solitons on C with positive curvature operator on (1, 1)-forms is path-connected.\",\"PeriodicalId\":15642,\"journal\":{\"name\":\"Journal of Differential Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jdg/1589853627\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jdg/1589853627","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Expanding Kähler–Ricci solitons coming out of Kähler cones
We give necessary and sufficient conditions for a Kähler equivariant resolution of a Kähler cone, with the resolution satisfying one of a number of auxiliary conditions, to admit a unique asymptotically conical (AC) expanding gradient Kähler-Ricci soliton. In particular, it follows that for any n ∈ N0 and for L a negative line bundle over a compact Kähler manifold D, the total space of the vector bundle L⊕(n+1) admits a unique AC expanding gradient Kähler-Ricci soliton with soliton vector field a positive multiple of the Euler vector field if and only if c1(KD⊗(L)) > 0. This generalises the examples already known in the literature. We further prove a general uniqueness result and show that the space of certain AC expanding gradient Kähler-Ricci solitons on C with positive curvature operator on (1, 1)-forms is path-connected.
期刊介绍:
Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.