喷射压力对乙醇和Tamanu生物柴油混合燃料CI发动机双燃料模式的影响

IF 2.3 4区 工程技术 Q3 ENGINEERING, CHEMICAL
M. Parthasarathy, P. Elumalai, M. Murunachippan, P. Senthilkumar, Saboor Shaik, M. Sharifpur, N. Khalilpoor
{"title":"喷射压力对乙醇和Tamanu生物柴油混合燃料CI发动机双燃料模式的影响","authors":"M. Parthasarathy, P. Elumalai, M. Murunachippan, P. Senthilkumar, Saboor Shaik, M. Sharifpur, N. Khalilpoor","doi":"10.1155/2022/6730963","DOIUrl":null,"url":null,"abstract":"The acceleration of global warming is primarily attributable to nonrenewable energy sources such as conventional fossil fuels. The primary source of energy for the automobile sector is petroleum products. Petroleum fuel is depleting daily, and its use produces a significant amount of greenhouse emissions. Biofuels would be a viable alternative to petroleum fuels, but a redesign of the engine would be required for complete substitution. The use of CNG in SI engines is not new, but it has not yet been implemented in CI engines. This is due to the fuel having a greater octane rating. The sole use of CNG in a CI engine results in knocking and excessive vibration. This study utilizes CNG under dual-fuel conditions when delivered through the intake manifold. In a dual-fuel mode, compressed natural gas (CNG) is utilized as the secondary fuel and a blend of 90% tamanu methyl ester and 10% ethanol (TMEE10) is used as the primary fuel. The injection pressure (IP) of the primary fuel changes between 200 and 240 bar, while the CNG induction rate is kept constant at 0.17 kg/h. The main combustion process is governed by the injection pressure of the pilot fuel. It could be affecting factors such as the vaporization characteristics of the fuel, the homogeneity of the mixture, and the ignition delay. Originally, tamanu methyl ester (TME) and diesel were used as base fuels in the investigation. As a result of its inherent oxygen content, TME emits more NOx than diesel. The addition of 10% ethanol to TME (TMEE10) marginally reduces NOx emissions in a CI mode because of its high latent heat of vaporization characteristics. Under peak load conditions, NOx emissions of TMEE10 are 6.2% lower than those of neat TME in the CI mode. Furthermore, the experiment was conducted using TMEE10 as the primary fuel and CNG as the secondary fuel. In the dual-fuel mode, the TMEE10 blend showed higher combustion, resulting in an increase in performance and a significant decrease in emission characteristics. As a result of the CNG’s high-energy value and rapid burning rate, the brake thermal efficiency (BTE) of TMEE10 improves to 29.09% compared to 27.09% for neat TME. In the dual-fuel mode of TMEE10 with 20.2% CNG energy sharing, the greatest reduction in fuel consumption was 2.9%. TMEE10 with CNG induction emits 7.8%, 12.5%, and 15.5% less HC, CO, and smoke, respectively, than TME operation.","PeriodicalId":13921,"journal":{"name":"International Journal of Chemical Engineering","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Influence of Injection Pressure on the Dual-Fuel Mode in CI Engines Fueled with Blends of Ethanol and Tamanu Biodiesel\",\"authors\":\"M. Parthasarathy, P. Elumalai, M. Murunachippan, P. Senthilkumar, Saboor Shaik, M. Sharifpur, N. Khalilpoor\",\"doi\":\"10.1155/2022/6730963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The acceleration of global warming is primarily attributable to nonrenewable energy sources such as conventional fossil fuels. The primary source of energy for the automobile sector is petroleum products. Petroleum fuel is depleting daily, and its use produces a significant amount of greenhouse emissions. Biofuels would be a viable alternative to petroleum fuels, but a redesign of the engine would be required for complete substitution. The use of CNG in SI engines is not new, but it has not yet been implemented in CI engines. This is due to the fuel having a greater octane rating. The sole use of CNG in a CI engine results in knocking and excessive vibration. This study utilizes CNG under dual-fuel conditions when delivered through the intake manifold. In a dual-fuel mode, compressed natural gas (CNG) is utilized as the secondary fuel and a blend of 90% tamanu methyl ester and 10% ethanol (TMEE10) is used as the primary fuel. The injection pressure (IP) of the primary fuel changes between 200 and 240 bar, while the CNG induction rate is kept constant at 0.17 kg/h. The main combustion process is governed by the injection pressure of the pilot fuel. It could be affecting factors such as the vaporization characteristics of the fuel, the homogeneity of the mixture, and the ignition delay. Originally, tamanu methyl ester (TME) and diesel were used as base fuels in the investigation. As a result of its inherent oxygen content, TME emits more NOx than diesel. The addition of 10% ethanol to TME (TMEE10) marginally reduces NOx emissions in a CI mode because of its high latent heat of vaporization characteristics. Under peak load conditions, NOx emissions of TMEE10 are 6.2% lower than those of neat TME in the CI mode. Furthermore, the experiment was conducted using TMEE10 as the primary fuel and CNG as the secondary fuel. In the dual-fuel mode, the TMEE10 blend showed higher combustion, resulting in an increase in performance and a significant decrease in emission characteristics. As a result of the CNG’s high-energy value and rapid burning rate, the brake thermal efficiency (BTE) of TMEE10 improves to 29.09% compared to 27.09% for neat TME. In the dual-fuel mode of TMEE10 with 20.2% CNG energy sharing, the greatest reduction in fuel consumption was 2.9%. TMEE10 with CNG induction emits 7.8%, 12.5%, and 15.5% less HC, CO, and smoke, respectively, than TME operation.\",\"PeriodicalId\":13921,\"journal\":{\"name\":\"International Journal of Chemical Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/6730963\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2022/6730963","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 2

摘要

全球变暖的加速主要是由于不可再生能源,如传统的化石燃料。汽车行业的主要能源来源是石油产品。石油燃料每天都在消耗,它的使用产生了大量的温室气体排放。生物燃料将是石油燃料的一种可行的替代品,但要完全替代,就需要重新设计发动机。在SI发动机中使用CNG并不新鲜,但在CI发动机中尚未实现。这是由于燃料具有较大的辛烷值。在CI发动机中单独使用CNG会导致爆震和过度振动。本研究在双燃料条件下通过进气歧管输送CNG。在双燃料模式下,压缩天然气(CNG)被用作二次燃料,90%塔马努甲酯和10%乙醇(TMEE10)的混合物被用作一次燃料。一次燃料的喷射压力(IP)在200 ~ 240 bar之间变化,而CNG诱导速率保持在0.17 kg/h。主燃烧过程由先导燃料的喷射压力控制。这可能是影响因素,如燃料的汽化特性,混合气的均匀性和点火延迟。本研究最初采用塔马努甲酯(TME)和柴油作为基础燃料。由于其固有的氧含量,TME比柴油排放更多的氮氧化物。在TME (TMEE10)中添加10%乙醇,由于其汽化潜热高的特性,在CI模式下可以略微减少NOx排放。在峰值负荷工况下,TMEE10比纯TME在CI模式下的NOx排放量低6.2%。实验以TMEE10为一次燃料,CNG为二次燃料。在双燃料模式下,TMEE10混合燃料表现出更高的燃烧性能,从而提高了性能,显著降低了排放特性。由于CNG的高能量值和快速燃烧速度,TMEE10的制动热效率(BTE)提高到29.09%,而纯TME则为27.09%。在双燃料模式下,使用20.2% CNG能源共享的TMEE10,油耗最大降幅为2.9%。采用CNG诱导的TMEE10比TME分别减少7.8%、12.5%和15.5%的HC、CO和烟雾排放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of Injection Pressure on the Dual-Fuel Mode in CI Engines Fueled with Blends of Ethanol and Tamanu Biodiesel
The acceleration of global warming is primarily attributable to nonrenewable energy sources such as conventional fossil fuels. The primary source of energy for the automobile sector is petroleum products. Petroleum fuel is depleting daily, and its use produces a significant amount of greenhouse emissions. Biofuels would be a viable alternative to petroleum fuels, but a redesign of the engine would be required for complete substitution. The use of CNG in SI engines is not new, but it has not yet been implemented in CI engines. This is due to the fuel having a greater octane rating. The sole use of CNG in a CI engine results in knocking and excessive vibration. This study utilizes CNG under dual-fuel conditions when delivered through the intake manifold. In a dual-fuel mode, compressed natural gas (CNG) is utilized as the secondary fuel and a blend of 90% tamanu methyl ester and 10% ethanol (TMEE10) is used as the primary fuel. The injection pressure (IP) of the primary fuel changes between 200 and 240 bar, while the CNG induction rate is kept constant at 0.17 kg/h. The main combustion process is governed by the injection pressure of the pilot fuel. It could be affecting factors such as the vaporization characteristics of the fuel, the homogeneity of the mixture, and the ignition delay. Originally, tamanu methyl ester (TME) and diesel were used as base fuels in the investigation. As a result of its inherent oxygen content, TME emits more NOx than diesel. The addition of 10% ethanol to TME (TMEE10) marginally reduces NOx emissions in a CI mode because of its high latent heat of vaporization characteristics. Under peak load conditions, NOx emissions of TMEE10 are 6.2% lower than those of neat TME in the CI mode. Furthermore, the experiment was conducted using TMEE10 as the primary fuel and CNG as the secondary fuel. In the dual-fuel mode, the TMEE10 blend showed higher combustion, resulting in an increase in performance and a significant decrease in emission characteristics. As a result of the CNG’s high-energy value and rapid burning rate, the brake thermal efficiency (BTE) of TMEE10 improves to 29.09% compared to 27.09% for neat TME. In the dual-fuel mode of TMEE10 with 20.2% CNG energy sharing, the greatest reduction in fuel consumption was 2.9%. TMEE10 with CNG induction emits 7.8%, 12.5%, and 15.5% less HC, CO, and smoke, respectively, than TME operation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Chemical Engineering
International Journal of Chemical Engineering Chemical Engineering-General Chemical Engineering
CiteScore
4.00
自引率
3.70%
发文量
95
审稿时长
14 weeks
期刊介绍: International Journal of Chemical Engineering publishes papers on technologies for the production, processing, transportation, and use of chemicals on a large scale. Studies typically relate to processes within chemical and energy industries, especially for production of food, pharmaceuticals, fuels, and chemical feedstocks. Topics of investigation cover plant design and operation, process design and analysis, control and reaction engineering, as well as hazard mitigation and safety measures. As well as original research, International Journal of Chemical Engineering also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信