{"title":"对渐进第一失效截尾Nadrajah-Hagheii分布的推论和最优截尾方案的修正","authors":"Samir K. Ashour, A. El-sheikh, A. Elshahhat","doi":"10.1007/s13171-022-00296-1","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":46728,"journal":{"name":"Sankhya-Series A-Mathematical Statistics and Probability","volume":"85 1","pages":"1102"},"PeriodicalIF":0.6000,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correction to: Inferences and Optimal Censoring Schemes for Progressively First-Failure Censored Nadarajah-Haghighi Distribution\",\"authors\":\"Samir K. Ashour, A. El-sheikh, A. Elshahhat\",\"doi\":\"10.1007/s13171-022-00296-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":46728,\"journal\":{\"name\":\"Sankhya-Series A-Mathematical Statistics and Probability\",\"volume\":\"85 1\",\"pages\":\"1102\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sankhya-Series A-Mathematical Statistics and Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13171-022-00296-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sankhya-Series A-Mathematical Statistics and Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13171-022-00296-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
期刊介绍:
Sankhya, Series A, publishes original, high quality research articles in various areas of modern statistics, such as probability, theoretical statistics, mathematical statistics and machine learning. The areas are interpreted in a broad sense. Articles are judged on the basis of their novelty and technical correctness.
Sankhya, Series B, primarily covers applied and interdisciplinary statistics including data sciences. Applied articles should preferably include analysis of original data of broad interest, novel applications of methodology and development of methods and techniques of immediate practical use. Authoritative reviews and comprehensive discussion articles in areas of vigorous current research are also welcome.