{"title":"调和加权均值的毕达哥拉斯不变性恒等式推广及其应用","authors":"P. Kahlig, J. Matkowski","doi":"10.2478/amsil-2020-0015","DOIUrl":null,"url":null,"abstract":"Abstract Under some simple conditions on the real functions f and g defined on an interval I ⊂ (0, ∞), the two-place functions Af (x, y) = f (x) + y − f (y) and Gg(x,y)=g(x)g(y)y {G_g}\\left({x,y} \\right) = {{g\\left(x \\right)} \\over {g\\left(y \\right)}}y generalize, respectively, A and G, the classical weighted arithmetic and geometric means. In this note, basing on the invariance identity G ∘ (H, A) = G (equivalent to the Pythagorean harmony proportion), a suitable weighted extension Hf,g of the classical harmonic mean H is introduced. An open problem concerning the symmetry of Hf,g is proposed. As an application a method of effective solving of some functional equations involving means is presented.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"34 1","pages":"104 - 122"},"PeriodicalIF":0.4000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Generalization of the Harmonic Weighted Mean Via Pythagorean Invariance Identity and Application\",\"authors\":\"P. Kahlig, J. Matkowski\",\"doi\":\"10.2478/amsil-2020-0015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Under some simple conditions on the real functions f and g defined on an interval I ⊂ (0, ∞), the two-place functions Af (x, y) = f (x) + y − f (y) and Gg(x,y)=g(x)g(y)y {G_g}\\\\left({x,y} \\\\right) = {{g\\\\left(x \\\\right)} \\\\over {g\\\\left(y \\\\right)}}y generalize, respectively, A and G, the classical weighted arithmetic and geometric means. In this note, basing on the invariance identity G ∘ (H, A) = G (equivalent to the Pythagorean harmony proportion), a suitable weighted extension Hf,g of the classical harmonic mean H is introduced. An open problem concerning the symmetry of Hf,g is proposed. As an application a method of effective solving of some functional equations involving means is presented.\",\"PeriodicalId\":52359,\"journal\":{\"name\":\"Annales Mathematicae Silesianae\",\"volume\":\"34 1\",\"pages\":\"104 - 122\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematicae Silesianae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/amsil-2020-0015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2020-0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
摘要
在区间I∧(0,∞)上定义的实数函数f和g的一些简单条件下,二维函数Af (x,y)= f (x) + y−f (y)和Gg(x,y)=g(x)g(y)y {G_g}\left({x,y} \right) = {{g\left(x \right)} / {g\left(y \right)}}分别推广了经典加权算术和几何均值A和g。本文根据不变性恒等式G°(H, A) = G(等价于毕达哥拉斯调和比例),引入经典调和平均值H的一个合适的加权推广Hf, G。提出了Hf,g对称性的一个开放问题。作为一种应用,本文给出了一种有效求解一些涉及均值的泛函方程的方法。
Generalization of the Harmonic Weighted Mean Via Pythagorean Invariance Identity and Application
Abstract Under some simple conditions on the real functions f and g defined on an interval I ⊂ (0, ∞), the two-place functions Af (x, y) = f (x) + y − f (y) and Gg(x,y)=g(x)g(y)y {G_g}\left({x,y} \right) = {{g\left(x \right)} \over {g\left(y \right)}}y generalize, respectively, A and G, the classical weighted arithmetic and geometric means. In this note, basing on the invariance identity G ∘ (H, A) = G (equivalent to the Pythagorean harmony proportion), a suitable weighted extension Hf,g of the classical harmonic mean H is introduced. An open problem concerning the symmetry of Hf,g is proposed. As an application a method of effective solving of some functional equations involving means is presented.