{"title":"原子探针层析成像直接观察CoCrNi中熵合金在几个纳米范围内的局部化学有序及其对力学性能的影响","authors":"K. Inoue, S. Yoshida, N. Tsuji","doi":"10.1103/physrevmaterials.5.085007","DOIUrl":null,"url":null,"abstract":"Local chemical ordering in CoCrNi medium-entropy alloy (MEA) was directly observed by the use of atom probe tomography. It was found that the densities of Cr, Co, and Ni were almost the same along the [111] direction, while those along the [001] direction were modulated to take a slightly enhanced and depleted value alternately within approximately 10 atomic layers corresponding to about 2 nm. The degree of modulation of Co and Ni was stronger than that of Cr. It was suggested that Cr-rich {001} atomic layers and (Ni + Co)-rich {001} layers tended to align mutually in the face-centered-cubic CoCrNi solid solution alloy. The mechanical properties of the MEA was found not to be affected by the presence of the local chemical ordering.","PeriodicalId":20545,"journal":{"name":"Physical Review Materials","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2021-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Direct observation of local chemical ordering in a few nanometer range in CoCrNi medium-entropy alloy by atom probe tomography and its impact on mechanical properties\",\"authors\":\"K. Inoue, S. Yoshida, N. Tsuji\",\"doi\":\"10.1103/physrevmaterials.5.085007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Local chemical ordering in CoCrNi medium-entropy alloy (MEA) was directly observed by the use of atom probe tomography. It was found that the densities of Cr, Co, and Ni were almost the same along the [111] direction, while those along the [001] direction were modulated to take a slightly enhanced and depleted value alternately within approximately 10 atomic layers corresponding to about 2 nm. The degree of modulation of Co and Ni was stronger than that of Cr. It was suggested that Cr-rich {001} atomic layers and (Ni + Co)-rich {001} layers tended to align mutually in the face-centered-cubic CoCrNi solid solution alloy. The mechanical properties of the MEA was found not to be affected by the presence of the local chemical ordering.\",\"PeriodicalId\":20545,\"journal\":{\"name\":\"Physical Review Materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2021-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevmaterials.5.085007\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1103/physrevmaterials.5.085007","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Direct observation of local chemical ordering in a few nanometer range in CoCrNi medium-entropy alloy by atom probe tomography and its impact on mechanical properties
Local chemical ordering in CoCrNi medium-entropy alloy (MEA) was directly observed by the use of atom probe tomography. It was found that the densities of Cr, Co, and Ni were almost the same along the [111] direction, while those along the [001] direction were modulated to take a slightly enhanced and depleted value alternately within approximately 10 atomic layers corresponding to about 2 nm. The degree of modulation of Co and Ni was stronger than that of Cr. It was suggested that Cr-rich {001} atomic layers and (Ni + Co)-rich {001} layers tended to align mutually in the face-centered-cubic CoCrNi solid solution alloy. The mechanical properties of the MEA was found not to be affected by the presence of the local chemical ordering.
期刊介绍:
Physical Review Materials is a new broad-scope international journal for the multidisciplinary community engaged in research on materials. It is intended to fill a gap in the family of existing Physical Review journals that publish materials research. This field has grown rapidly in recent years and is increasingly being carried out in a way that transcends conventional subject boundaries. The journal was created to provide a common publication and reference source to the expanding community of physicists, materials scientists, chemists, engineers, and researchers in related disciplines that carry out high-quality original research in materials. It will share the same commitment to the high quality expected of all APS publications.