社交网络上的SaaS多租户性能测试

Q3 Business, Management and Accounting
M. Sumalatha, M. Parthiban
{"title":"社交网络上的SaaS多租户性能测试","authors":"M. Sumalatha, M. Parthiban","doi":"10.1504/IJENM.2018.10015775","DOIUrl":null,"url":null,"abstract":"Recent years, cloud computing is description for facilitating suitable on-demand network access. In cloud, computing multi-tenancy plays a significant role on software as a service (SaaS). Structure of SaaS multi-tenant cloud aware applications initiates several new challenges the central one being a tenant. In cloud testing, tenant applications need to be tested in addition to performance testing be used. At the same time as numerous performance-testing techniques exist; most of them produce only fixed progressions of test configurations. This paper focuses on the challenges for Multi-tenancy testing in SaaS and analyses the configuration dynamically in which SaaS testing differs from testing conventional applications. The paper proposes performance testing and fittest function of each tenant. For fitness function, GASE algorithm is used which combines a genetic algorithm and a symbolic execution. This proposed algorithm uses the above performance testing values for obtaining the best of each tenant, in the form of fitness generations. A real experimentation is proposed using a multiple tenants on open stack cloud computing environment over social networks.","PeriodicalId":39284,"journal":{"name":"International Journal of Enterprise Network Management","volume":"9 1","pages":"234-250"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SaaS multitenant performance testing over social networks\",\"authors\":\"M. Sumalatha, M. Parthiban\",\"doi\":\"10.1504/IJENM.2018.10015775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent years, cloud computing is description for facilitating suitable on-demand network access. In cloud, computing multi-tenancy plays a significant role on software as a service (SaaS). Structure of SaaS multi-tenant cloud aware applications initiates several new challenges the central one being a tenant. In cloud testing, tenant applications need to be tested in addition to performance testing be used. At the same time as numerous performance-testing techniques exist; most of them produce only fixed progressions of test configurations. This paper focuses on the challenges for Multi-tenancy testing in SaaS and analyses the configuration dynamically in which SaaS testing differs from testing conventional applications. The paper proposes performance testing and fittest function of each tenant. For fitness function, GASE algorithm is used which combines a genetic algorithm and a symbolic execution. This proposed algorithm uses the above performance testing values for obtaining the best of each tenant, in the form of fitness generations. A real experimentation is proposed using a multiple tenants on open stack cloud computing environment over social networks.\",\"PeriodicalId\":39284,\"journal\":{\"name\":\"International Journal of Enterprise Network Management\",\"volume\":\"9 1\",\"pages\":\"234-250\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Enterprise Network Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJENM.2018.10015775\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Business, Management and Accounting\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Enterprise Network Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJENM.2018.10015775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 0

摘要

近年来,云计算被描述为方便合适的按需网络访问。在云计算中,计算多租户在软件即服务(SaaS)中扮演着重要的角色。SaaS多租户云感知应用程序的结构引发了几个新的挑战,中心挑战是租户。在云测试中,除了要使用的性能测试外,还需要测试租户应用程序。与此同时,存在许多性能测试技术;它们中的大多数只产生测试配置的固定进度。本文重点讨论了SaaS中多租户测试面临的挑战,并动态分析了SaaS测试与传统应用程序测试的不同之处。提出了各租户的性能测试和最适函数。适应度函数采用遗传算法和符号执行相结合的GASE算法。该算法使用上述性能测试值,以适应度代的形式获得每个租户的最佳值。提出了在社交网络上使用开放堆栈云计算环境中的多租户的实际实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SaaS multitenant performance testing over social networks
Recent years, cloud computing is description for facilitating suitable on-demand network access. In cloud, computing multi-tenancy plays a significant role on software as a service (SaaS). Structure of SaaS multi-tenant cloud aware applications initiates several new challenges the central one being a tenant. In cloud testing, tenant applications need to be tested in addition to performance testing be used. At the same time as numerous performance-testing techniques exist; most of them produce only fixed progressions of test configurations. This paper focuses on the challenges for Multi-tenancy testing in SaaS and analyses the configuration dynamically in which SaaS testing differs from testing conventional applications. The paper proposes performance testing and fittest function of each tenant. For fitness function, GASE algorithm is used which combines a genetic algorithm and a symbolic execution. This proposed algorithm uses the above performance testing values for obtaining the best of each tenant, in the form of fitness generations. A real experimentation is proposed using a multiple tenants on open stack cloud computing environment over social networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Enterprise Network Management
International Journal of Enterprise Network Management Business, Management and Accounting-Management of Technology and Innovation
CiteScore
0.90
自引率
0.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信