{"title":"低速碰撞下摩擦系数和角度对眩光失效行为影响的仿真研究","authors":"Peiyu You, H. Chen, Mingjie Li, Ye Wu","doi":"10.1515/secm-2022-0194","DOIUrl":null,"url":null,"abstract":"Abstract The aim of this paper is to study the effect of friction coefficient and impact angle on the failure behaviors of glass fiber reinforced aluminum laminates (GLARE) under the low-velocity impact (LVI) loading. A methodology is developed in commercial software ABAQUS/Explicit, and its accuracy is verified based on the results of comparison between simulation and experiment. In the simulation, Johnson–Cook flow stress model and surface-based cohesive behavior are carried out to simulate the damage evolution of aluminum alloy layers and delamination at the interface. Further, both the dynamic response history and damage mechanism characterization of these hybrid laminates are presented and compared carefully. Additionally, due to the advantage of simulation, it is accurate and easy to discuss on the evolution of the damage contour consisting of the damage degree of composite and metal layers as well as the interface between them. Finally, the influence rules of friction coefficient and angle on the failure behaviors of GLARE under LVI are drawn clearly.","PeriodicalId":21480,"journal":{"name":"Science and Engineering of Composite Materials","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A simulative study on the effect of friction coefficient and angle on failure behaviors of GLARE subjected to low-velocity impact\",\"authors\":\"Peiyu You, H. Chen, Mingjie Li, Ye Wu\",\"doi\":\"10.1515/secm-2022-0194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The aim of this paper is to study the effect of friction coefficient and impact angle on the failure behaviors of glass fiber reinforced aluminum laminates (GLARE) under the low-velocity impact (LVI) loading. A methodology is developed in commercial software ABAQUS/Explicit, and its accuracy is verified based on the results of comparison between simulation and experiment. In the simulation, Johnson–Cook flow stress model and surface-based cohesive behavior are carried out to simulate the damage evolution of aluminum alloy layers and delamination at the interface. Further, both the dynamic response history and damage mechanism characterization of these hybrid laminates are presented and compared carefully. Additionally, due to the advantage of simulation, it is accurate and easy to discuss on the evolution of the damage contour consisting of the damage degree of composite and metal layers as well as the interface between them. Finally, the influence rules of friction coefficient and angle on the failure behaviors of GLARE under LVI are drawn clearly.\",\"PeriodicalId\":21480,\"journal\":{\"name\":\"Science and Engineering of Composite Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Engineering of Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/secm-2022-0194\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Engineering of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/secm-2022-0194","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
A simulative study on the effect of friction coefficient and angle on failure behaviors of GLARE subjected to low-velocity impact
Abstract The aim of this paper is to study the effect of friction coefficient and impact angle on the failure behaviors of glass fiber reinforced aluminum laminates (GLARE) under the low-velocity impact (LVI) loading. A methodology is developed in commercial software ABAQUS/Explicit, and its accuracy is verified based on the results of comparison between simulation and experiment. In the simulation, Johnson–Cook flow stress model and surface-based cohesive behavior are carried out to simulate the damage evolution of aluminum alloy layers and delamination at the interface. Further, both the dynamic response history and damage mechanism characterization of these hybrid laminates are presented and compared carefully. Additionally, due to the advantage of simulation, it is accurate and easy to discuss on the evolution of the damage contour consisting of the damage degree of composite and metal layers as well as the interface between them. Finally, the influence rules of friction coefficient and angle on the failure behaviors of GLARE under LVI are drawn clearly.
期刊介绍:
Science and Engineering of Composite Materials is a quarterly publication which provides a forum for discussion of all aspects related to the structure and performance under simulated and actual service conditions of composites. The publication covers a variety of subjects, such as macro and micro and nano structure of materials, their mechanics and nanomechanics, the interphase, physical and chemical aging, fatigue, environmental interactions, and process modeling. The interdisciplinary character of the subject as well as the possible development and use of composites for novel and specific applications receives special attention.