{"title":"正形学的标记序列演算","authors":"Tomoaki Kawano","doi":"10.18778/0138-0680.47.4.01","DOIUrl":null,"url":null,"abstract":"Orthologic (OL) is non-classical logic and has been studied as a part of quantumlogic. OL is based on an ortholattice and is also called minimal quantum logic. Sequent calculus is used as a tool for proof in logic and has been examinedfor several decades. Although there are many studies on sequent calculus forOL, these sequent calculi have some problems. In particular, they do not includeimplication connective and they are mostly incompatible with the cut-eliminationtheorem. In this paper, we introduce new labeled sequent calculus called LGOI, and show that this sequent calculus solve the above problems. It is alreadyknown that OL is decidable. We prove that decidability is preserved when theimplication connective is added to OL.","PeriodicalId":38667,"journal":{"name":"Bulletin of the Section of Logic","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Labeled Sequent Calculus for Orthologic\",\"authors\":\"Tomoaki Kawano\",\"doi\":\"10.18778/0138-0680.47.4.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Orthologic (OL) is non-classical logic and has been studied as a part of quantumlogic. OL is based on an ortholattice and is also called minimal quantum logic. Sequent calculus is used as a tool for proof in logic and has been examinedfor several decades. Although there are many studies on sequent calculus forOL, these sequent calculi have some problems. In particular, they do not includeimplication connective and they are mostly incompatible with the cut-eliminationtheorem. In this paper, we introduce new labeled sequent calculus called LGOI, and show that this sequent calculus solve the above problems. It is alreadyknown that OL is decidable. We prove that decidability is preserved when theimplication connective is added to OL.\",\"PeriodicalId\":38667,\"journal\":{\"name\":\"Bulletin of the Section of Logic\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Section of Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18778/0138-0680.47.4.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Section of Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18778/0138-0680.47.4.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Arts and Humanities","Score":null,"Total":0}
Orthologic (OL) is non-classical logic and has been studied as a part of quantumlogic. OL is based on an ortholattice and is also called minimal quantum logic. Sequent calculus is used as a tool for proof in logic and has been examinedfor several decades. Although there are many studies on sequent calculus forOL, these sequent calculi have some problems. In particular, they do not includeimplication connective and they are mostly incompatible with the cut-eliminationtheorem. In this paper, we introduce new labeled sequent calculus called LGOI, and show that this sequent calculus solve the above problems. It is alreadyknown that OL is decidable. We prove that decidability is preserved when theimplication connective is added to OL.