{"title":"关于电流与平滑分布相切的几何结构","authors":"G. Alberti, A. Massaccesi, E. Stepanov","doi":"10.4310/jdg/1668186786","DOIUrl":null,"url":null,"abstract":"It is well known that a k-dimensional smooth surface in a Euclidean space cannot be tangent to a non-involutive distribution of k-dimensional planes. In this paper we discuss the extension of this statement to weaker notions of surfaces, namely integral and normal currents. We find out that integral currents behave to this regard exactly as smooth surfaces, while the behaviour of normal currents is rather multifaceted. This issue is strictly related to a geometric property of the boundary of currents, which is also discussed in details.","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2019-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On the geometric structure of currents tangent to smooth distributions\",\"authors\":\"G. Alberti, A. Massaccesi, E. Stepanov\",\"doi\":\"10.4310/jdg/1668186786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well known that a k-dimensional smooth surface in a Euclidean space cannot be tangent to a non-involutive distribution of k-dimensional planes. In this paper we discuss the extension of this statement to weaker notions of surfaces, namely integral and normal currents. We find out that integral currents behave to this regard exactly as smooth surfaces, while the behaviour of normal currents is rather multifaceted. This issue is strictly related to a geometric property of the boundary of currents, which is also discussed in details.\",\"PeriodicalId\":15642,\"journal\":{\"name\":\"Journal of Differential Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2019-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jdg/1668186786\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jdg/1668186786","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the geometric structure of currents tangent to smooth distributions
It is well known that a k-dimensional smooth surface in a Euclidean space cannot be tangent to a non-involutive distribution of k-dimensional planes. In this paper we discuss the extension of this statement to weaker notions of surfaces, namely integral and normal currents. We find out that integral currents behave to this regard exactly as smooth surfaces, while the behaviour of normal currents is rather multifaceted. This issue is strictly related to a geometric property of the boundary of currents, which is also discussed in details.
期刊介绍:
Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.