{"title":"机械刺激增加人脂肪来源基质细胞的增殖和分化潜能","authors":"Jungwirth Susanne, Bohner Lauren, Spindler Kathrin, Hanisch Marcel, Kleinheinz Johannes, Sielker Sonja","doi":"10.23937/2469-570X/1410056","DOIUrl":null,"url":null,"abstract":"Background: Dynamic conditions stimulate the bone remodeling process by improving the nutrients transport and increasing the expression of osteogenic cells. The purpose of this study was to evaluate the effect of mechanical stimulation on the osteogenic differentiation of human adipose-derived stromal cells. Methods: Cells were cultured under static and dynamic conditions in collagen scaffolds for 14 days. The mechanical stimulation was performed using a biaxial rotating bioreactor (5 × rpm and perfusion flow rate of 10 × rpm). Cell viability was analyzed with a living cell count and a MTT assay. Changes in expression of specific stem cell marker, osteogenic marker and endothelial markers were analyzed on gene (RT-qPCR) and protein (IHC) level. Data were statistically analyzed by one-way ANOVA (p = 0.05). Results: Cell viability was higher under dynamic condition and cells migrated deeper in the collagen matrix. Expression of stem cell marker (ANPEP/CD13, CD44, THY1/CD90) was significant higher under dynamic condition. This was also observed for osteogenic markers (collagen 1, osteopontin, osteonectin). Conclusion: The mechanical stimulation increased significantly cell viability and differentiation potential of human adipose-derived stromal cells.","PeriodicalId":73481,"journal":{"name":"International journal of stem cell research and therapy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Mechanical Stimulation Increases the Proliferation and Differentiation Potential of Human Adipose-Derived Stromal Cells\",\"authors\":\"Jungwirth Susanne, Bohner Lauren, Spindler Kathrin, Hanisch Marcel, Kleinheinz Johannes, Sielker Sonja\",\"doi\":\"10.23937/2469-570X/1410056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Dynamic conditions stimulate the bone remodeling process by improving the nutrients transport and increasing the expression of osteogenic cells. The purpose of this study was to evaluate the effect of mechanical stimulation on the osteogenic differentiation of human adipose-derived stromal cells. Methods: Cells were cultured under static and dynamic conditions in collagen scaffolds for 14 days. The mechanical stimulation was performed using a biaxial rotating bioreactor (5 × rpm and perfusion flow rate of 10 × rpm). Cell viability was analyzed with a living cell count and a MTT assay. Changes in expression of specific stem cell marker, osteogenic marker and endothelial markers were analyzed on gene (RT-qPCR) and protein (IHC) level. Data were statistically analyzed by one-way ANOVA (p = 0.05). Results: Cell viability was higher under dynamic condition and cells migrated deeper in the collagen matrix. Expression of stem cell marker (ANPEP/CD13, CD44, THY1/CD90) was significant higher under dynamic condition. This was also observed for osteogenic markers (collagen 1, osteopontin, osteonectin). Conclusion: The mechanical stimulation increased significantly cell viability and differentiation potential of human adipose-derived stromal cells.\",\"PeriodicalId\":73481,\"journal\":{\"name\":\"International journal of stem cell research and therapy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of stem cell research and therapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23937/2469-570X/1410056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of stem cell research and therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23937/2469-570X/1410056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mechanical Stimulation Increases the Proliferation and Differentiation Potential of Human Adipose-Derived Stromal Cells
Background: Dynamic conditions stimulate the bone remodeling process by improving the nutrients transport and increasing the expression of osteogenic cells. The purpose of this study was to evaluate the effect of mechanical stimulation on the osteogenic differentiation of human adipose-derived stromal cells. Methods: Cells were cultured under static and dynamic conditions in collagen scaffolds for 14 days. The mechanical stimulation was performed using a biaxial rotating bioreactor (5 × rpm and perfusion flow rate of 10 × rpm). Cell viability was analyzed with a living cell count and a MTT assay. Changes in expression of specific stem cell marker, osteogenic marker and endothelial markers were analyzed on gene (RT-qPCR) and protein (IHC) level. Data were statistically analyzed by one-way ANOVA (p = 0.05). Results: Cell viability was higher under dynamic condition and cells migrated deeper in the collagen matrix. Expression of stem cell marker (ANPEP/CD13, CD44, THY1/CD90) was significant higher under dynamic condition. This was also observed for osteogenic markers (collagen 1, osteopontin, osteonectin). Conclusion: The mechanical stimulation increased significantly cell viability and differentiation potential of human adipose-derived stromal cells.