{"title":"Keller-Segel系统通量限制的临界爆破指数","authors":"M. Winkler","doi":"10.1512/iumj.2022.71.9042","DOIUrl":null,"url":null,"abstract":"The parabolic-elliptic cross-diffusion system \\[ \n\\left\\{ \\begin{array}{l} \nu_t = \\Delta u - \\nabla \\cdot \\Big(uf(|\\nabla v|^2) \\nabla v \\Big), \\\\[1mm] \n0 = \\Delta v - \\mu + u, \n\\qquad \\int_\\Omega v=0, \n\\qquad \n\\mu:=\\frac{1}{|\\Omega|} \\int_\\Omega u dx, \n\\end{array} \\right. \\] is considered along with homogeneous Neumann-type boundary conditions in a smoothly bounded domain $\\Omega\\subset R^n$, $n\\ge 1$, where $f$ generalizes the prototype given by \\[ \nf(\\xi) = (1+\\xi)^{-\\alpha}, \n\\qquad \\xi\\ge 0, \n\\qquad \\mbox{for all } \\xi\\ge 0, \\] with $\\alpha\\in R$. \nIn this framework, the main results assert that if $n\\ge 2$, $\\Omega$ is a ball and \\[ \n\\alpha<\\frac{n-2}{2(n-1)}, \\] then throughout a considerably large set of radially symmetric initial data, an associated initial value problem admits solutions blowing up in finite time with respect to the $L^\\infty$ norm of their first components. \nThis is complemented by a second statement which ensures that in general and not necessarily symmetric settings, if either $n=1$ and $\\alpha\\in R$ is arbitrary, or $n\\ge 2$ and $\\alpha>\\frac{n-2}{2(n-1)}$, then any explosion is ruled out in the sense that for arbitrary nonnegative and continuous initial data, a global bounded classical solution exists.","PeriodicalId":50369,"journal":{"name":"Indiana University Mathematics Journal","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2020-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"A critical blow-up exponent for flux limiation in a Keller-Segel system\",\"authors\":\"M. Winkler\",\"doi\":\"10.1512/iumj.2022.71.9042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The parabolic-elliptic cross-diffusion system \\\\[ \\n\\\\left\\\\{ \\\\begin{array}{l} \\nu_t = \\\\Delta u - \\\\nabla \\\\cdot \\\\Big(uf(|\\\\nabla v|^2) \\\\nabla v \\\\Big), \\\\\\\\[1mm] \\n0 = \\\\Delta v - \\\\mu + u, \\n\\\\qquad \\\\int_\\\\Omega v=0, \\n\\\\qquad \\n\\\\mu:=\\\\frac{1}{|\\\\Omega|} \\\\int_\\\\Omega u dx, \\n\\\\end{array} \\\\right. \\\\] is considered along with homogeneous Neumann-type boundary conditions in a smoothly bounded domain $\\\\Omega\\\\subset R^n$, $n\\\\ge 1$, where $f$ generalizes the prototype given by \\\\[ \\nf(\\\\xi) = (1+\\\\xi)^{-\\\\alpha}, \\n\\\\qquad \\\\xi\\\\ge 0, \\n\\\\qquad \\\\mbox{for all } \\\\xi\\\\ge 0, \\\\] with $\\\\alpha\\\\in R$. \\nIn this framework, the main results assert that if $n\\\\ge 2$, $\\\\Omega$ is a ball and \\\\[ \\n\\\\alpha<\\\\frac{n-2}{2(n-1)}, \\\\] then throughout a considerably large set of radially symmetric initial data, an associated initial value problem admits solutions blowing up in finite time with respect to the $L^\\\\infty$ norm of their first components. \\nThis is complemented by a second statement which ensures that in general and not necessarily symmetric settings, if either $n=1$ and $\\\\alpha\\\\in R$ is arbitrary, or $n\\\\ge 2$ and $\\\\alpha>\\\\frac{n-2}{2(n-1)}$, then any explosion is ruled out in the sense that for arbitrary nonnegative and continuous initial data, a global bounded classical solution exists.\",\"PeriodicalId\":50369,\"journal\":{\"name\":\"Indiana University Mathematics Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indiana University Mathematics Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1512/iumj.2022.71.9042\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indiana University Mathematics Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1512/iumj.2022.71.9042","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 20
摘要
抛物型椭圆交叉扩散系统\[\left\{\begin{array}{l}u_t=\Delta u-\nabla\cdot\Big(uf(|\nablav|^2)\nablaV\Big),\\[1mm]0=\Delta v-\mu+u,\qquad\int_\Omega v=0,\qqaud\mu:=\frac{1}与光滑有界域$\Omega\subet R^n$,$n\ge 1$中的齐次Neumann型边界条件一起考虑,其中$f$推广了由\[f(\neneneba xi)=(1+\nenenebb xi)^{-\alpha},\qquad\nenenebc xi \ge 0,\qqaud\mbox{for all}\nenenebd xi \ge0,\]给出的原型,其中$\alpha在R$中。在这个框架中,主要结果断言,如果$n\ge2$,$\Omega$是一个球,并且\[\alpha\frac{n-2}{2(n-1)}$,则在任意非负和连续初始数据存在全局有界经典解的意义上,排除了任何爆炸。
A critical blow-up exponent for flux limiation in a Keller-Segel system
The parabolic-elliptic cross-diffusion system \[
\left\{ \begin{array}{l}
u_t = \Delta u - \nabla \cdot \Big(uf(|\nabla v|^2) \nabla v \Big), \\[1mm]
0 = \Delta v - \mu + u,
\qquad \int_\Omega v=0,
\qquad
\mu:=\frac{1}{|\Omega|} \int_\Omega u dx,
\end{array} \right. \] is considered along with homogeneous Neumann-type boundary conditions in a smoothly bounded domain $\Omega\subset R^n$, $n\ge 1$, where $f$ generalizes the prototype given by \[
f(\xi) = (1+\xi)^{-\alpha},
\qquad \xi\ge 0,
\qquad \mbox{for all } \xi\ge 0, \] with $\alpha\in R$.
In this framework, the main results assert that if $n\ge 2$, $\Omega$ is a ball and \[
\alpha<\frac{n-2}{2(n-1)}, \] then throughout a considerably large set of radially symmetric initial data, an associated initial value problem admits solutions blowing up in finite time with respect to the $L^\infty$ norm of their first components.
This is complemented by a second statement which ensures that in general and not necessarily symmetric settings, if either $n=1$ and $\alpha\in R$ is arbitrary, or $n\ge 2$ and $\alpha>\frac{n-2}{2(n-1)}$, then any explosion is ruled out in the sense that for arbitrary nonnegative and continuous initial data, a global bounded classical solution exists.