{"title":"共切束上可积系统的刚性纤维","authors":"Morimichi Kawasaki, Ryuma Orita","doi":"10.2969/jmsj/84278427","DOIUrl":null,"url":null,"abstract":"(Non-)displaceability of fibers of integrable systems has been an important problem in symplectic geometry. In this paper, for a large class of classical Liouville integrable systems containing the Lagrangian top, the Kovalevskaya top and the C. Neumann problem, we find a non-displaceable fiber for each of them. Moreover, we show that the non-displaceable fiber which we detect is the unique fiber which is non-displaceable from the zero-section. As a special case of this result, we also show the existence of a singular level set of a convex Hamiltonian, which is non-displaceable from the zero-section. To prove these results, we use the notion of superheaviness introduced by Entov and Polterovich.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Rigid fibers of integrable systems on cotangent bundles\",\"authors\":\"Morimichi Kawasaki, Ryuma Orita\",\"doi\":\"10.2969/jmsj/84278427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"(Non-)displaceability of fibers of integrable systems has been an important problem in symplectic geometry. In this paper, for a large class of classical Liouville integrable systems containing the Lagrangian top, the Kovalevskaya top and the C. Neumann problem, we find a non-displaceable fiber for each of them. Moreover, we show that the non-displaceable fiber which we detect is the unique fiber which is non-displaceable from the zero-section. As a special case of this result, we also show the existence of a singular level set of a convex Hamiltonian, which is non-displaceable from the zero-section. To prove these results, we use the notion of superheaviness introduced by Entov and Polterovich.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2969/jmsj/84278427\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2969/jmsj/84278427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rigid fibers of integrable systems on cotangent bundles
(Non-)displaceability of fibers of integrable systems has been an important problem in symplectic geometry. In this paper, for a large class of classical Liouville integrable systems containing the Lagrangian top, the Kovalevskaya top and the C. Neumann problem, we find a non-displaceable fiber for each of them. Moreover, we show that the non-displaceable fiber which we detect is the unique fiber which is non-displaceable from the zero-section. As a special case of this result, we also show the existence of a singular level set of a convex Hamiltonian, which is non-displaceable from the zero-section. To prove these results, we use the notion of superheaviness introduced by Entov and Polterovich.