{"title":"核能-可再生综合能源系统的建模与控制:绿色电力和氢气生产的动态系统模型","authors":"R. Jacob, J. Zhang","doi":"10.1063/5.0139875","DOIUrl":null,"url":null,"abstract":"The need for decarbonization and diversification of energy resources has led to the development of integrated energy systems (IESs), where multiple resources supply more than one energy sector. One such IES with small modular nuclear reactors and renewables (wind and solar) as generating resources, catering to the demand of the electric grid while producing hydrogen for industries, is modeled in this paper. The physics-based component models are represented using the Modelica language and interconnected to form the IES. The control and coordination of the overall system are ensured by designing a suitable control architecture composed of individual subsystem-level controls and supervisory control. The dynamic performance and the load-following capability of the IES are evaluated, while satisfying the safe operational limits of the components. Different configurations and modes of IES operation are considered, where the adaptability of the control system in the presence of varying demands and renewable generations is validated. The simulation results indicate that hydrogen as a flexible load facilitates the supply of varying grid demand. Additionally, the renewables are also accommodated into the IES owing to the flexibility of the balance of plant associated with the nuclear reactors.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modeling and control of nuclear–renewable integrated energy systems: Dynamic system model for green electricity and hydrogen production\",\"authors\":\"R. Jacob, J. Zhang\",\"doi\":\"10.1063/5.0139875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The need for decarbonization and diversification of energy resources has led to the development of integrated energy systems (IESs), where multiple resources supply more than one energy sector. One such IES with small modular nuclear reactors and renewables (wind and solar) as generating resources, catering to the demand of the electric grid while producing hydrogen for industries, is modeled in this paper. The physics-based component models are represented using the Modelica language and interconnected to form the IES. The control and coordination of the overall system are ensured by designing a suitable control architecture composed of individual subsystem-level controls and supervisory control. The dynamic performance and the load-following capability of the IES are evaluated, while satisfying the safe operational limits of the components. Different configurations and modes of IES operation are considered, where the adaptability of the control system in the presence of varying demands and renewable generations is validated. The simulation results indicate that hydrogen as a flexible load facilitates the supply of varying grid demand. Additionally, the renewables are also accommodated into the IES owing to the flexibility of the balance of plant associated with the nuclear reactors.\",\"PeriodicalId\":16953,\"journal\":{\"name\":\"Journal of Renewable and Sustainable Energy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Renewable and Sustainable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0139875\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable and Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0139875","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Modeling and control of nuclear–renewable integrated energy systems: Dynamic system model for green electricity and hydrogen production
The need for decarbonization and diversification of energy resources has led to the development of integrated energy systems (IESs), where multiple resources supply more than one energy sector. One such IES with small modular nuclear reactors and renewables (wind and solar) as generating resources, catering to the demand of the electric grid while producing hydrogen for industries, is modeled in this paper. The physics-based component models are represented using the Modelica language and interconnected to form the IES. The control and coordination of the overall system are ensured by designing a suitable control architecture composed of individual subsystem-level controls and supervisory control. The dynamic performance and the load-following capability of the IES are evaluated, while satisfying the safe operational limits of the components. Different configurations and modes of IES operation are considered, where the adaptability of the control system in the presence of varying demands and renewable generations is validated. The simulation results indicate that hydrogen as a flexible load facilitates the supply of varying grid demand. Additionally, the renewables are also accommodated into the IES owing to the flexibility of the balance of plant associated with the nuclear reactors.
期刊介绍:
The Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy relevant to the physical science and engineering communities. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields.
Topics covered include:
Renewable energy economics and policy
Renewable energy resource assessment
Solar energy: photovoltaics, solar thermal energy, solar energy for fuels
Wind energy: wind farms, rotors and blades, on- and offshore wind conditions, aerodynamics, fluid dynamics
Bioenergy: biofuels, biomass conversion, artificial photosynthesis
Distributed energy generation: rooftop PV, distributed fuel cells, distributed wind, micro-hydrogen power generation
Power distribution & systems modeling: power electronics and controls, smart grid
Energy efficient buildings: smart windows, PV, wind, power management
Energy conversion: flexoelectric, piezoelectric, thermoelectric, other technologies
Energy storage: batteries, supercapacitors, hydrogen storage, other fuels
Fuel cells: proton exchange membrane cells, solid oxide cells, hybrid fuel cells, other
Marine and hydroelectric energy: dams, tides, waves, other
Transportation: alternative vehicle technologies, plug-in technologies, other
Geothermal energy