带约束的丢番图近似

IF 0.5 3区 数学 Q3 MATHEMATICS
J. Champagne, D. Roy
{"title":"带约束的丢番图近似","authors":"J. Champagne, D. Roy","doi":"10.4064/aa221031-8-12","DOIUrl":null,"url":null,"abstract":"Following Schmidt, Thurnheer and Bugeaud-Kristensen, we study how Dirichlet's theorem on linear forms needs to be modified when one requires that the vectors of coefficients of the linear forms make a bounded acute angle with respect to a fixed proper non-zero subspace $V$ of $\\mathbb{R}^n$. Assuming that the point of $\\mathbb{R}^n$ that we are approximating has linearly independent coordinates over $\\mathbb{Q}$, we obtain best possible exponents of approximation which surprisingly depend only on the dimension of $V$. Our estimates are derived by reduction to a result of Thurnheer, while their optimality follows from a new general construction in parametric geometry of numbers involving angular constraints.","PeriodicalId":37888,"journal":{"name":"Acta Arithmetica","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Diophantine approximation with constraints\",\"authors\":\"J. Champagne, D. Roy\",\"doi\":\"10.4064/aa221031-8-12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Following Schmidt, Thurnheer and Bugeaud-Kristensen, we study how Dirichlet's theorem on linear forms needs to be modified when one requires that the vectors of coefficients of the linear forms make a bounded acute angle with respect to a fixed proper non-zero subspace $V$ of $\\\\mathbb{R}^n$. Assuming that the point of $\\\\mathbb{R}^n$ that we are approximating has linearly independent coordinates over $\\\\mathbb{Q}$, we obtain best possible exponents of approximation which surprisingly depend only on the dimension of $V$. Our estimates are derived by reduction to a result of Thurnheer, while their optimality follows from a new general construction in parametric geometry of numbers involving angular constraints.\",\"PeriodicalId\":37888,\"journal\":{\"name\":\"Acta Arithmetica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Arithmetica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/aa221031-8-12\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Arithmetica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/aa221031-8-12","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

继Schmidt、Thurnheir和Bugeaud-Kristensen之后,我们研究了当要求线性形式的系数向量相对于$\mathbb{R}^n$的固定的适当非零子空间$V$形成有界锐角时,如何修改线性形式上的狄利克雷定理。假设我们正在近似的$\mathbb{R}^n$的点在$\mathbb{Q}$上具有线性无关的坐标,我们获得了最佳可能的近似指数,该指数令人惊讶地仅取决于$V$的维数。我们的估计是通过简化为Thurnher的结果得出的,而它们的最优性来自于涉及角度约束的数的参数几何中的一个新的一般构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diophantine approximation with constraints
Following Schmidt, Thurnheer and Bugeaud-Kristensen, we study how Dirichlet's theorem on linear forms needs to be modified when one requires that the vectors of coefficients of the linear forms make a bounded acute angle with respect to a fixed proper non-zero subspace $V$ of $\mathbb{R}^n$. Assuming that the point of $\mathbb{R}^n$ that we are approximating has linearly independent coordinates over $\mathbb{Q}$, we obtain best possible exponents of approximation which surprisingly depend only on the dimension of $V$. Our estimates are derived by reduction to a result of Thurnheer, while their optimality follows from a new general construction in parametric geometry of numbers involving angular constraints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Arithmetica
Acta Arithmetica 数学-数学
CiteScore
1.00
自引率
14.30%
发文量
64
审稿时长
4-8 weeks
期刊介绍: The journal publishes papers on the Theory of Numbers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信