云量对当地遥感的影响——皮亚尼察河案例研究

IF 0.9 4区 环境科学与生态学 Q4 OCEANOGRAPHY
M. Paszkuta
{"title":"云量对当地遥感的影响——皮亚尼察河案例研究","authors":"M. Paszkuta","doi":"10.26881/oahs-2022.3.04","DOIUrl":null,"url":null,"abstract":"Abstract New satellite-based techniques open up new horizons to researchers and local communities. Concurrently, however, requirements and expectations with regard to satel-lite-based remote sensing products are increasingly higher. By relying on satellite-derived information, environmental observations can cover areas of a few to several metres resolution. Here we are dealing with free-of-charge and generally available sources of satellite-based information. The Piaśnica River mouth area was selected as an observation site representing a highly dynamic morphological transect. The paper compares products of cloud cover detection, supplied with data and available in the Copernicus database for a local area in the coastal zone of the Baltic Sea. The absolute difference did not exceed 5%, which confirms a high efficiency of the solutions offered. More than 96% of the clouded area determined for the Sentinel-2/MSI (Multispectral Instrument) was correctly identified when compared with supervised observations. The rate was lower (92%) for the Sentinel-3/OLCI (Ocean and Land Colour Instrument). It was eventually concluded that, at the local level, successful observations can be conducted using the cloud cover map supplied with the satellite data. At the same time, the analyses presented do not rule out further efforts to, e.g., increase the accuracy and speed of the analyses.","PeriodicalId":19407,"journal":{"name":"Oceanological and Hydrobiological Studies","volume":"51 1","pages":"283 - 297"},"PeriodicalIF":0.9000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of cloud cover on local remote sensing – Piaśnica River case study\",\"authors\":\"M. Paszkuta\",\"doi\":\"10.26881/oahs-2022.3.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract New satellite-based techniques open up new horizons to researchers and local communities. Concurrently, however, requirements and expectations with regard to satel-lite-based remote sensing products are increasingly higher. By relying on satellite-derived information, environmental observations can cover areas of a few to several metres resolution. Here we are dealing with free-of-charge and generally available sources of satellite-based information. The Piaśnica River mouth area was selected as an observation site representing a highly dynamic morphological transect. The paper compares products of cloud cover detection, supplied with data and available in the Copernicus database for a local area in the coastal zone of the Baltic Sea. The absolute difference did not exceed 5%, which confirms a high efficiency of the solutions offered. More than 96% of the clouded area determined for the Sentinel-2/MSI (Multispectral Instrument) was correctly identified when compared with supervised observations. The rate was lower (92%) for the Sentinel-3/OLCI (Ocean and Land Colour Instrument). It was eventually concluded that, at the local level, successful observations can be conducted using the cloud cover map supplied with the satellite data. At the same time, the analyses presented do not rule out further efforts to, e.g., increase the accuracy and speed of the analyses.\",\"PeriodicalId\":19407,\"journal\":{\"name\":\"Oceanological and Hydrobiological Studies\",\"volume\":\"51 1\",\"pages\":\"283 - 297\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oceanological and Hydrobiological Studies\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.26881/oahs-2022.3.04\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oceanological and Hydrobiological Studies","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.26881/oahs-2022.3.04","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

摘要新的卫星技术为研究人员和当地社区开辟了新的视野。然而,与此同时,对卫星遥感产品的要求和期望也越来越高。通过依靠卫星获得的信息,环境观测可以覆盖几米到几米分辨率的区域。在这里,我们讨论的是免费和普遍可用的卫星信息来源。Piaśnica河口地区被选为代表高度动态形态样带的观测点。本文比较了哥白尼数据库中提供的波罗的海沿岸地区的云量探测产品。绝对差异不超过5%,这证实了所提供的解决方案的高效率。与监督观测结果相比,Sentinel-2/MSI(多光谱仪器)确定的云区有96%以上被正确识别。Sentinel-3/OLCI(海洋和陆地颜色仪器)的比率较低(92%)。最终得出的结论是,在地方一级,可以利用卫星数据提供的云量图进行成功的观测。同时,所提供的分析不排除进一步努力,例如,提高分析的准确性和速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of cloud cover on local remote sensing – Piaśnica River case study
Abstract New satellite-based techniques open up new horizons to researchers and local communities. Concurrently, however, requirements and expectations with regard to satel-lite-based remote sensing products are increasingly higher. By relying on satellite-derived information, environmental observations can cover areas of a few to several metres resolution. Here we are dealing with free-of-charge and generally available sources of satellite-based information. The Piaśnica River mouth area was selected as an observation site representing a highly dynamic morphological transect. The paper compares products of cloud cover detection, supplied with data and available in the Copernicus database for a local area in the coastal zone of the Baltic Sea. The absolute difference did not exceed 5%, which confirms a high efficiency of the solutions offered. More than 96% of the clouded area determined for the Sentinel-2/MSI (Multispectral Instrument) was correctly identified when compared with supervised observations. The rate was lower (92%) for the Sentinel-3/OLCI (Ocean and Land Colour Instrument). It was eventually concluded that, at the local level, successful observations can be conducted using the cloud cover map supplied with the satellite data. At the same time, the analyses presented do not rule out further efforts to, e.g., increase the accuracy and speed of the analyses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
11.10%
发文量
8
审稿时长
>12 weeks
期刊介绍: Oceanological and Hydrobiological Studies is an international journal published by the Institute of Oceanography, University of Gdańsk in Poland. The journal has 4 issues per year and contains papers on all aspects of the marine environment and hydrobiology. All manuscripts are reviewed by editors and independent experts. Based on the referees'' recommendations, the Editor will make a decision on whether to accept a contribution. All articles are published in English. The journal is open to all matters concerning the water environment, thus providing the readers with a wide spectrum of topics in every issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信