不规则间隔高频数据的综合方差:一种基于预平均的状态空间方法

IF 0.7 4区 经济学 Q3 ECONOMICS
Vitali Alexeev, Jun Chen, Katja Ignatieva
{"title":"不规则间隔高频数据的综合方差:一种基于预平均的状态空间方法","authors":"Vitali Alexeev, Jun Chen, Katja Ignatieva","doi":"10.1515/snde-2021-0093","DOIUrl":null,"url":null,"abstract":"Abstract We propose a new state space model to estimate the Integrated Variance (IV) in the presence of microstructure noise. Applying the pre-averaging sampling scheme to the irregularly spaced high-frequency data, we derive equidistant efficient price approximations to calculate the noise-contaminated realised variance (NCRV), which is used as an IV estimator. The theoretical properties of the new volatility estimator are illustrated and compared with those of the realised volatility. We highlight the robustness of the new estimator to market microstructure noise (MMN). The pre-averaging sampling effectively eliminates the influence of the MMN component on the NCRV series. The empirical illustration features the EUR/USD exchange rate and provides evidence of a superior performance in volatility forecasting at very high sampling frequencies.","PeriodicalId":46709,"journal":{"name":"Studies in Nonlinear Dynamics and Econometrics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated variance of irregularly spaced high-frequency data: A state space approach based on pre-averaging\",\"authors\":\"Vitali Alexeev, Jun Chen, Katja Ignatieva\",\"doi\":\"10.1515/snde-2021-0093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We propose a new state space model to estimate the Integrated Variance (IV) in the presence of microstructure noise. Applying the pre-averaging sampling scheme to the irregularly spaced high-frequency data, we derive equidistant efficient price approximations to calculate the noise-contaminated realised variance (NCRV), which is used as an IV estimator. The theoretical properties of the new volatility estimator are illustrated and compared with those of the realised volatility. We highlight the robustness of the new estimator to market microstructure noise (MMN). The pre-averaging sampling effectively eliminates the influence of the MMN component on the NCRV series. The empirical illustration features the EUR/USD exchange rate and provides evidence of a superior performance in volatility forecasting at very high sampling frequencies.\",\"PeriodicalId\":46709,\"journal\":{\"name\":\"Studies in Nonlinear Dynamics and Econometrics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Nonlinear Dynamics and Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1515/snde-2021-0093\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Nonlinear Dynamics and Econometrics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1515/snde-2021-0093","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要提出了一种新的状态空间模型来估计微观结构噪声下的综合方差(IV)。将预平均采样方案应用于不规则间隔的高频数据,我们推导出等距有效价格近似来计算噪声污染的实现方差(NCRV),并将其用作IV估计量。说明了新波动估计器的理论性质,并与实际波动估计器进行了比较。我们强调了新的估计器对市场微观结构噪声(MMN)的鲁棒性。预平均采样有效地消除了MMN分量对NCRV序列的影响。实证说明以欧元/美元汇率为特征,并提供证据表明,在非常高的采样频率下,波动性预测具有优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrated variance of irregularly spaced high-frequency data: A state space approach based on pre-averaging
Abstract We propose a new state space model to estimate the Integrated Variance (IV) in the presence of microstructure noise. Applying the pre-averaging sampling scheme to the irregularly spaced high-frequency data, we derive equidistant efficient price approximations to calculate the noise-contaminated realised variance (NCRV), which is used as an IV estimator. The theoretical properties of the new volatility estimator are illustrated and compared with those of the realised volatility. We highlight the robustness of the new estimator to market microstructure noise (MMN). The pre-averaging sampling effectively eliminates the influence of the MMN component on the NCRV series. The empirical illustration features the EUR/USD exchange rate and provides evidence of a superior performance in volatility forecasting at very high sampling frequencies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
34
期刊介绍: Studies in Nonlinear Dynamics & Econometrics (SNDE) recognizes that advances in statistics and dynamical systems theory may increase our understanding of economic and financial markets. The journal seeks both theoretical and applied papers that characterize and motivate nonlinear phenomena. Researchers are required to assist replication of empirical results by providing copies of data and programs online. Algorithms and rapid communications are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信