{"title":"$\\mathbb{Z}^{d}$上从紧凸子集到无限的第一遍渗流的最大流","authors":"Barbara Dembin","doi":"10.1214/19-aop1367","DOIUrl":null,"url":null,"abstract":"We consider the standard first passage percolation model on Z^d with a distribution G on R+ that admits an exponential moment. We study the maximal flow between a compact convex subset A of R^d and infinity. The study of maximal flow is associated with the study of sets of edges of minimal capacity that cut A from infinity. We prove that the rescaled maximal flow between nA and infinity φ(nA)/n^ (d−1) almost surely converges towards a deterministic constant depending on A. This constant corresponds to the capacity of the boundary ∂A of A and is the integral of a deterministic function over ∂A. This result was shown in dimension 2 and conjectured for higher dimensions by Garet in [6].","PeriodicalId":50763,"journal":{"name":"Annals of Probability","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The maximal flow from a compact convex subset to infinity in first passage percolation on $\\\\mathbb{Z}^{d}$\",\"authors\":\"Barbara Dembin\",\"doi\":\"10.1214/19-aop1367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the standard first passage percolation model on Z^d with a distribution G on R+ that admits an exponential moment. We study the maximal flow between a compact convex subset A of R^d and infinity. The study of maximal flow is associated with the study of sets of edges of minimal capacity that cut A from infinity. We prove that the rescaled maximal flow between nA and infinity φ(nA)/n^ (d−1) almost surely converges towards a deterministic constant depending on A. This constant corresponds to the capacity of the boundary ∂A of A and is the integral of a deterministic function over ∂A. This result was shown in dimension 2 and conjectured for higher dimensions by Garet in [6].\",\"PeriodicalId\":50763,\"journal\":{\"name\":\"Annals of Probability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/19-aop1367\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/19-aop1367","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
The maximal flow from a compact convex subset to infinity in first passage percolation on $\mathbb{Z}^{d}$
We consider the standard first passage percolation model on Z^d with a distribution G on R+ that admits an exponential moment. We study the maximal flow between a compact convex subset A of R^d and infinity. The study of maximal flow is associated with the study of sets of edges of minimal capacity that cut A from infinity. We prove that the rescaled maximal flow between nA and infinity φ(nA)/n^ (d−1) almost surely converges towards a deterministic constant depending on A. This constant corresponds to the capacity of the boundary ∂A of A and is the integral of a deterministic function over ∂A. This result was shown in dimension 2 and conjectured for higher dimensions by Garet in [6].
期刊介绍:
The Annals of Probability publishes research papers in modern probability theory, its relations to other areas of mathematics, and its applications in the physical and biological sciences. Emphasis is on importance, interest, and originality – formal novelty and correctness are not sufficient for publication. The Annals will also publish authoritative review papers and surveys of areas in vigorous development.