{"title":"数据分析中的微分方程","authors":"I. Dattner","doi":"10.1002/wics.1534","DOIUrl":null,"url":null,"abstract":"Differential equations have proven to be a powerful mathematical tool in science and engineering, leading to better understanding, prediction, and control of dynamic processes. In this paper, we review the role played by differential equations in data analysis. More specifically, we consider the intersection between differential equations and data analysis in the light of modern statistical learning methodologies.","PeriodicalId":47779,"journal":{"name":"Wiley Interdisciplinary Reviews-Computational Statistics","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wics.1534","citationCount":"9","resultStr":"{\"title\":\"Differential equations in data analysis\",\"authors\":\"I. Dattner\",\"doi\":\"10.1002/wics.1534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Differential equations have proven to be a powerful mathematical tool in science and engineering, leading to better understanding, prediction, and control of dynamic processes. In this paper, we review the role played by differential equations in data analysis. More specifically, we consider the intersection between differential equations and data analysis in the light of modern statistical learning methodologies.\",\"PeriodicalId\":47779,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Computational Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2020-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/wics.1534\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Computational Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/wics.1534\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/wics.1534","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Differential equations have proven to be a powerful mathematical tool in science and engineering, leading to better understanding, prediction, and control of dynamic processes. In this paper, we review the role played by differential equations in data analysis. More specifically, we consider the intersection between differential equations and data analysis in the light of modern statistical learning methodologies.