有效利用云数据中心,并使用LMRO算法将用户需求分配给虚拟机

Q4 Engineering
D. Banu, S. Aranganathan
{"title":"有效利用云数据中心,并使用LMRO算法将用户需求分配给虚拟机","authors":"D. Banu, S. Aranganathan","doi":"10.1504/ijvics.2019.10025631","DOIUrl":null,"url":null,"abstract":"Cloud computing is a recent trend for modifying the computing technique strongly. The cloud storage assets will be recurrently accessed. The method works based on a black box method that has difficulty to correlate acquired data for internal resource management techniques. The simulation is not permitted to conduct comparative analysis due to huge amount of features required. The Load Maintenance and Resource Optimisation (LMRO) algorithm proposes utilisation of cloud data centres and allocates user demands to Virtual Machines (VMs). The load balancer keeps track of cloudlets processed by every virtual machine and tries to balance the active load. The method has a main data centre controller and load balancers to collect and analyse the information. Based on experimental evaluation, proposed LMRO techniques reduces 0.065 seconds Task Request Time (TRT), 0.20 seconds Data centre Processing Time (DPT), 0.0125 $ Virtual Machine Cost (VMC) and improves 19.25% Throughput (TRP) as compared to the conventional techniques.","PeriodicalId":39333,"journal":{"name":"International Journal of Vehicle Information and Communication Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective utilisation of cloud data centre and allocating user demands to virtual machines using LMRO algorithm\",\"authors\":\"D. Banu, S. Aranganathan\",\"doi\":\"10.1504/ijvics.2019.10025631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cloud computing is a recent trend for modifying the computing technique strongly. The cloud storage assets will be recurrently accessed. The method works based on a black box method that has difficulty to correlate acquired data for internal resource management techniques. The simulation is not permitted to conduct comparative analysis due to huge amount of features required. The Load Maintenance and Resource Optimisation (LMRO) algorithm proposes utilisation of cloud data centres and allocates user demands to Virtual Machines (VMs). The load balancer keeps track of cloudlets processed by every virtual machine and tries to balance the active load. The method has a main data centre controller and load balancers to collect and analyse the information. Based on experimental evaluation, proposed LMRO techniques reduces 0.065 seconds Task Request Time (TRT), 0.20 seconds Data centre Processing Time (DPT), 0.0125 $ Virtual Machine Cost (VMC) and improves 19.25% Throughput (TRP) as compared to the conventional techniques.\",\"PeriodicalId\":39333,\"journal\":{\"name\":\"International Journal of Vehicle Information and Communication Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Vehicle Information and Communication Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijvics.2019.10025631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicle Information and Communication Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijvics.2019.10025631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

云计算是最近的一种趋势,它强烈地改变了计算技术。云存储资产将被频繁访问。该方法基于黑盒方法,难以将获取的数据与内部资源管理技术相关联。由于需要大量的特征,模拟不允许进行比较分析。负载维护和资源优化(LMRO)算法建议利用云数据中心,并将用户需求分配给虚拟机(vm)。负载平衡器跟踪每个虚拟机处理的cloudlet,并尝试平衡活动负载。该方法有一个主数据中心控制器和负载平衡器来收集和分析信息。基于实验评估,LMRO技术与传统技术相比,任务请求时间(TRT)减少0.065秒,数据中心处理时间(DPT)减少0.20秒,虚拟机成本(VMC)减少0.0125美元,吞吐量(TRP)提高19.25%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effective utilisation of cloud data centre and allocating user demands to virtual machines using LMRO algorithm
Cloud computing is a recent trend for modifying the computing technique strongly. The cloud storage assets will be recurrently accessed. The method works based on a black box method that has difficulty to correlate acquired data for internal resource management techniques. The simulation is not permitted to conduct comparative analysis due to huge amount of features required. The Load Maintenance and Resource Optimisation (LMRO) algorithm proposes utilisation of cloud data centres and allocates user demands to Virtual Machines (VMs). The load balancer keeps track of cloudlets processed by every virtual machine and tries to balance the active load. The method has a main data centre controller and load balancers to collect and analyse the information. Based on experimental evaluation, proposed LMRO techniques reduces 0.065 seconds Task Request Time (TRT), 0.20 seconds Data centre Processing Time (DPT), 0.0125 $ Virtual Machine Cost (VMC) and improves 19.25% Throughput (TRP) as compared to the conventional techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Vehicle Information and Communication Systems
International Journal of Vehicle Information and Communication Systems Computer Science-Computer Science Applications
CiteScore
1.20
自引率
0.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信