{"title":"由轨道模糊迭代函数系统生成的模糊分形结构","authors":"Irina Savu, Radu Miculescu, Alexandru Mihail","doi":"10.1515/dema-2022-0217","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we present a structure result concerning fuzzy fractals generated by an orbital fuzzy iterated function system ( ( X , d ) , ( f i ) i ∈ I , ( ρ i ) i ∈ I ) \\left(\\left(X,d),{({f}_{i})}_{i\\in I},{\\left({\\rho }_{i})}_{i\\in I}) . Our result involves the following two main ingredients: (a) the fuzzy fractal associated with the canonical iterated fuzzy function system ( ( I N , d Λ ) , ( τ i ) i ∈ I , ( ρ i ) i ∈ I ) \\left(\\left({I}^{{\\mathbb{N}}},{d}_{\\Lambda }),{\\left({\\tau }_{i})}_{i\\in I},{\\left({\\rho }_{i})}_{i\\in I}) , where d Λ {d}_{\\Lambda } is Baire’s metric on the code space I N {I}^{{\\mathbb{N}}} and τ i : I N → I N {\\tau }_{i}:{I}^{{\\mathbb{N}}}\\to {I}^{{\\mathbb{N}}} is given by τ i ( ( ω 1 , ω 2 , … ) ) ≔ ( i , ω 1 , ω 2 , … ) {\\tau }_{i}\\left(\\left({\\omega }_{1},{\\omega }_{2},\\ldots )):= \\left(i,{\\omega }_{1},{\\omega }_{2},\\ldots ) for every ( ω 1 , ω 2 , … ) ∈ I N \\left({\\omega }_{1},{\\omega }_{2},\\ldots )\\in {I}^{{\\mathbb{N}}} and every i ∈ I i\\in I ; (b) the canonical projections of certain iterated function systems associated with the fuzzy fractal under consideration.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The structure of fuzzy fractals generated by an orbital fuzzy iterated function system\",\"authors\":\"Irina Savu, Radu Miculescu, Alexandru Mihail\",\"doi\":\"10.1515/dema-2022-0217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we present a structure result concerning fuzzy fractals generated by an orbital fuzzy iterated function system ( ( X , d ) , ( f i ) i ∈ I , ( ρ i ) i ∈ I ) \\\\left(\\\\left(X,d),{({f}_{i})}_{i\\\\in I},{\\\\left({\\\\rho }_{i})}_{i\\\\in I}) . Our result involves the following two main ingredients: (a) the fuzzy fractal associated with the canonical iterated fuzzy function system ( ( I N , d Λ ) , ( τ i ) i ∈ I , ( ρ i ) i ∈ I ) \\\\left(\\\\left({I}^{{\\\\mathbb{N}}},{d}_{\\\\Lambda }),{\\\\left({\\\\tau }_{i})}_{i\\\\in I},{\\\\left({\\\\rho }_{i})}_{i\\\\in I}) , where d Λ {d}_{\\\\Lambda } is Baire’s metric on the code space I N {I}^{{\\\\mathbb{N}}} and τ i : I N → I N {\\\\tau }_{i}:{I}^{{\\\\mathbb{N}}}\\\\to {I}^{{\\\\mathbb{N}}} is given by τ i ( ( ω 1 , ω 2 , … ) ) ≔ ( i , ω 1 , ω 2 , … ) {\\\\tau }_{i}\\\\left(\\\\left({\\\\omega }_{1},{\\\\omega }_{2},\\\\ldots )):= \\\\left(i,{\\\\omega }_{1},{\\\\omega }_{2},\\\\ldots ) for every ( ω 1 , ω 2 , … ) ∈ I N \\\\left({\\\\omega }_{1},{\\\\omega }_{2},\\\\ldots )\\\\in {I}^{{\\\\mathbb{N}}} and every i ∈ I i\\\\in I ; (b) the canonical projections of certain iterated function systems associated with the fuzzy fractal under consideration.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/dema-2022-0217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/dema-2022-0217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
摘要本文给出了一个关于轨道模糊迭代函数系统((X,d),(f i)i∈i,(ρi)i≠i)\left(\left(X,d){({f}_{i} )}_{i\ in i},{\left({\rho}_{i})}。我们的结果涉及以下两个主要成分:(a)与正则迭代模糊函数系统((I N,d∧),(τI)I∈I,(ρI)I≠I)\left(\left({I}^{\mathbb{N}})相关的模糊分形,{d}_{\Lambda}),{\left({\tau}_{i}{d}_{\Lambda}是码空间I N{I}^{{\mathbb{N}}和τI:I N上的Baire度量→ I N{\tau}_{I}:{I}^{\mathbb{N}}\ to{I’^{\ mathbb}}∈I N\left({\omega}_{1},{\omega}_{2},\ldots)\在{I}^{\mathbb{N}}}}中,并且I中的每个I∈I I\;(b) 与所考虑的模糊分形相关的某些迭代函数系统的正则投影。
The structure of fuzzy fractals generated by an orbital fuzzy iterated function system
Abstract In this article, we present a structure result concerning fuzzy fractals generated by an orbital fuzzy iterated function system ( ( X , d ) , ( f i ) i ∈ I , ( ρ i ) i ∈ I ) \left(\left(X,d),{({f}_{i})}_{i\in I},{\left({\rho }_{i})}_{i\in I}) . Our result involves the following two main ingredients: (a) the fuzzy fractal associated with the canonical iterated fuzzy function system ( ( I N , d Λ ) , ( τ i ) i ∈ I , ( ρ i ) i ∈ I ) \left(\left({I}^{{\mathbb{N}}},{d}_{\Lambda }),{\left({\tau }_{i})}_{i\in I},{\left({\rho }_{i})}_{i\in I}) , where d Λ {d}_{\Lambda } is Baire’s metric on the code space I N {I}^{{\mathbb{N}}} and τ i : I N → I N {\tau }_{i}:{I}^{{\mathbb{N}}}\to {I}^{{\mathbb{N}}} is given by τ i ( ( ω 1 , ω 2 , … ) ) ≔ ( i , ω 1 , ω 2 , … ) {\tau }_{i}\left(\left({\omega }_{1},{\omega }_{2},\ldots )):= \left(i,{\omega }_{1},{\omega }_{2},\ldots ) for every ( ω 1 , ω 2 , … ) ∈ I N \left({\omega }_{1},{\omega }_{2},\ldots )\in {I}^{{\mathbb{N}}} and every i ∈ I i\in I ; (b) the canonical projections of certain iterated function systems associated with the fuzzy fractal under consideration.