循环群双曲的相对双曲性

Pub Date : 2020-06-12 DOI:10.4171/ggd/703
Franccois Dahmani, S SurajKrishnaM
{"title":"循环群双曲的相对双曲性","authors":"Franccois Dahmani, S SurajKrishnaM","doi":"10.4171/ggd/703","DOIUrl":null,"url":null,"abstract":"Let $G$ be a torsion-free hyperbolic group and $\\alpha$ an automorphism of $G$. We show that there exists a canonical collection of subgroups that are polynomially growing under $\\alpha$, and that the mapping torus of $G$ by $\\alpha$ is hyperbolic relative to the suspensions of the maximal polynomially growing subgroups under $\\alpha$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Relative hyperbolicity of hyperbolic-by-cyclic groups\",\"authors\":\"Franccois Dahmani, S SurajKrishnaM\",\"doi\":\"10.4171/ggd/703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $G$ be a torsion-free hyperbolic group and $\\\\alpha$ an automorphism of $G$. We show that there exists a canonical collection of subgroups that are polynomially growing under $\\\\alpha$, and that the mapping torus of $G$ by $\\\\alpha$ is hyperbolic relative to the suspensions of the maximal polynomially growing subgroups under $\\\\alpha$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/ggd/703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ggd/703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

设$G$是无扭双曲群,$\alpha$是$G$的自同构。我们证明了在$\alpha$下存在多项式增长的子群的正则集合,并且$G$乘$\alph$的映射环面相对于$\alpa$下的最大多项式增长子群的暂停是双曲的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Relative hyperbolicity of hyperbolic-by-cyclic groups
Let $G$ be a torsion-free hyperbolic group and $\alpha$ an automorphism of $G$. We show that there exists a canonical collection of subgroups that are polynomially growing under $\alpha$, and that the mapping torus of $G$ by $\alpha$ is hyperbolic relative to the suspensions of the maximal polynomially growing subgroups under $\alpha$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信