{"title":"船用高分子材料螺旋桨的设计与运行诊断","authors":"Marcin Kluczyk, A. Grzadziela, Tomislav Batur","doi":"10.2478/pomr-2022-0049","DOIUrl":null,"url":null,"abstract":"Abstract There has been a rapidly growing interest in the use of composite and polymer materials for the construction of marine propellers for over 20 years. The main advantages of these materials are a reduction in the weight of the propeller, increased efficiency due to the hydroelasticity effect, a reduction of the hydroacoustic signature, and a cost reduction for serial production. This paper presents an overview of diagnostic methods that can be applied at the design level and during the operation of marine propellers made of polymeric materials. Non-invasive contact and non-contact-based diagnostic techniques for evaluating the technical state of the propeller are reviewed, and the advantages and disadvantages of qualitative and quantitative methods are identified. Operational diagnostic procedures for propellers are areessential for the safety of vessels at sea. Finally, the structure of a diagnostic system is proposed. It combined diagnosis process with the genesis of damage and the prognosis of the technical condition, i.e. production and in-service diagnostics.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Operational Diagnostics of Marine Propellers Made of Polymer Materials\",\"authors\":\"Marcin Kluczyk, A. Grzadziela, Tomislav Batur\",\"doi\":\"10.2478/pomr-2022-0049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract There has been a rapidly growing interest in the use of composite and polymer materials for the construction of marine propellers for over 20 years. The main advantages of these materials are a reduction in the weight of the propeller, increased efficiency due to the hydroelasticity effect, a reduction of the hydroacoustic signature, and a cost reduction for serial production. This paper presents an overview of diagnostic methods that can be applied at the design level and during the operation of marine propellers made of polymeric materials. Non-invasive contact and non-contact-based diagnostic techniques for evaluating the technical state of the propeller are reviewed, and the advantages and disadvantages of qualitative and quantitative methods are identified. Operational diagnostic procedures for propellers are areessential for the safety of vessels at sea. Finally, the structure of a diagnostic system is proposed. It combined diagnosis process with the genesis of damage and the prognosis of the technical condition, i.e. production and in-service diagnostics.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2478/pomr-2022-0049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/pomr-2022-0049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Design and Operational Diagnostics of Marine Propellers Made of Polymer Materials
Abstract There has been a rapidly growing interest in the use of composite and polymer materials for the construction of marine propellers for over 20 years. The main advantages of these materials are a reduction in the weight of the propeller, increased efficiency due to the hydroelasticity effect, a reduction of the hydroacoustic signature, and a cost reduction for serial production. This paper presents an overview of diagnostic methods that can be applied at the design level and during the operation of marine propellers made of polymeric materials. Non-invasive contact and non-contact-based diagnostic techniques for evaluating the technical state of the propeller are reviewed, and the advantages and disadvantages of qualitative and quantitative methods are identified. Operational diagnostic procedures for propellers are areessential for the safety of vessels at sea. Finally, the structure of a diagnostic system is proposed. It combined diagnosis process with the genesis of damage and the prognosis of the technical condition, i.e. production and in-service diagnostics.