船用高分子材料螺旋桨的设计与运行诊断

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Marcin Kluczyk, A. Grzadziela, Tomislav Batur
{"title":"船用高分子材料螺旋桨的设计与运行诊断","authors":"Marcin Kluczyk, A. Grzadziela, Tomislav Batur","doi":"10.2478/pomr-2022-0049","DOIUrl":null,"url":null,"abstract":"Abstract There has been a rapidly growing interest in the use of composite and polymer materials for the construction of marine propellers for over 20 years. The main advantages of these materials are a reduction in the weight of the propeller, increased efficiency due to the hydroelasticity effect, a reduction of the hydroacoustic signature, and a cost reduction for serial production. This paper presents an overview of diagnostic methods that can be applied at the design level and during the operation of marine propellers made of polymeric materials. Non-invasive contact and non-contact-based diagnostic techniques for evaluating the technical state of the propeller are reviewed, and the advantages and disadvantages of qualitative and quantitative methods are identified. Operational diagnostic procedures for propellers are areessential for the safety of vessels at sea. Finally, the structure of a diagnostic system is proposed. It combined diagnosis process with the genesis of damage and the prognosis of the technical condition, i.e. production and in-service diagnostics.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Operational Diagnostics of Marine Propellers Made of Polymer Materials\",\"authors\":\"Marcin Kluczyk, A. Grzadziela, Tomislav Batur\",\"doi\":\"10.2478/pomr-2022-0049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract There has been a rapidly growing interest in the use of composite and polymer materials for the construction of marine propellers for over 20 years. The main advantages of these materials are a reduction in the weight of the propeller, increased efficiency due to the hydroelasticity effect, a reduction of the hydroacoustic signature, and a cost reduction for serial production. This paper presents an overview of diagnostic methods that can be applied at the design level and during the operation of marine propellers made of polymeric materials. Non-invasive contact and non-contact-based diagnostic techniques for evaluating the technical state of the propeller are reviewed, and the advantages and disadvantages of qualitative and quantitative methods are identified. Operational diagnostic procedures for propellers are areessential for the safety of vessels at sea. Finally, the structure of a diagnostic system is proposed. It combined diagnosis process with the genesis of damage and the prognosis of the technical condition, i.e. production and in-service diagnostics.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2478/pomr-2022-0049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/pomr-2022-0049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

摘要20多年来,人们对使用复合材料和聚合物材料建造船用螺旋桨的兴趣迅速增长。这些材料的主要优点是减少了螺旋桨的重量,由于水弹性效应而提高了效率,减少了水声特征,并且降低了批量生产的成本。本文概述了可应用于聚合物材料船用螺旋桨设计水平和运行过程中的诊断方法。综述了用于评估螺旋桨技术状态的无创接触和基于非接触的诊断技术,并确定了定性和定量方法的优缺点。螺旋桨的操作诊断程序对海上船只的安全至关重要。最后,提出了诊断系统的结构。它将诊断过程与损伤的发生和技术条件的预测相结合,即生产和在役诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and Operational Diagnostics of Marine Propellers Made of Polymer Materials
Abstract There has been a rapidly growing interest in the use of composite and polymer materials for the construction of marine propellers for over 20 years. The main advantages of these materials are a reduction in the weight of the propeller, increased efficiency due to the hydroelasticity effect, a reduction of the hydroacoustic signature, and a cost reduction for serial production. This paper presents an overview of diagnostic methods that can be applied at the design level and during the operation of marine propellers made of polymeric materials. Non-invasive contact and non-contact-based diagnostic techniques for evaluating the technical state of the propeller are reviewed, and the advantages and disadvantages of qualitative and quantitative methods are identified. Operational diagnostic procedures for propellers are areessential for the safety of vessels at sea. Finally, the structure of a diagnostic system is proposed. It combined diagnosis process with the genesis of damage and the prognosis of the technical condition, i.e. production and in-service diagnostics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信