个性化生物陶瓷植入物的高分辨率vat光聚合:新进展、监管障碍和关键建议

IF 16.8 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
I. Roohani, Ellen T. Newsom, H. Zreiqat
{"title":"个性化生物陶瓷植入物的高分辨率vat光聚合:新进展、监管障碍和关键建议","authors":"I. Roohani, Ellen T. Newsom, H. Zreiqat","doi":"10.1080/09506608.2023.2194744","DOIUrl":null,"url":null,"abstract":"ABSTRACT Bioceramics are in high demand due to their biocompatibility and bone-regenerative properties, representing a multibillion-dollar industry with orthopaedic and dental implant applications. However, traditional manufacturing methods have limitations in producing complex geometries tailored to match patient-specific bone defects. Vat-photopolymerization 3D printing has emerged as a precise and high-resolution technique to fabricate complex bioceramic parts, generating strong, ultralight, energy-absorbing, and tough materials. Despite their promise, the clinical translation of 3D-printed bioceramic implants is hampered by regulatory and reimbursement hurdles. This review analyses recent advances in vat-photopolymerization printing of bioceramics, highlighting the technical challenges and the potential of nanoscale printing to enhance the mechanical and biological functions of implants. The review also provides recommendations for regulatory frameworks, envisioning a future with the successful clinical translation of advanced 3D architectures.","PeriodicalId":14427,"journal":{"name":"International Materials Reviews","volume":" ","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"High-resolution vat-photopolymerization of personalized bioceramic implants: new advances, regulatory hurdles, and key recommendations\",\"authors\":\"I. Roohani, Ellen T. Newsom, H. Zreiqat\",\"doi\":\"10.1080/09506608.2023.2194744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Bioceramics are in high demand due to their biocompatibility and bone-regenerative properties, representing a multibillion-dollar industry with orthopaedic and dental implant applications. However, traditional manufacturing methods have limitations in producing complex geometries tailored to match patient-specific bone defects. Vat-photopolymerization 3D printing has emerged as a precise and high-resolution technique to fabricate complex bioceramic parts, generating strong, ultralight, energy-absorbing, and tough materials. Despite their promise, the clinical translation of 3D-printed bioceramic implants is hampered by regulatory and reimbursement hurdles. This review analyses recent advances in vat-photopolymerization printing of bioceramics, highlighting the technical challenges and the potential of nanoscale printing to enhance the mechanical and biological functions of implants. The review also provides recommendations for regulatory frameworks, envisioning a future with the successful clinical translation of advanced 3D architectures.\",\"PeriodicalId\":14427,\"journal\":{\"name\":\"International Materials Reviews\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Materials Reviews\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/09506608.2023.2194744\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Materials Reviews","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09506608.2023.2194744","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-resolution vat-photopolymerization of personalized bioceramic implants: new advances, regulatory hurdles, and key recommendations
ABSTRACT Bioceramics are in high demand due to their biocompatibility and bone-regenerative properties, representing a multibillion-dollar industry with orthopaedic and dental implant applications. However, traditional manufacturing methods have limitations in producing complex geometries tailored to match patient-specific bone defects. Vat-photopolymerization 3D printing has emerged as a precise and high-resolution technique to fabricate complex bioceramic parts, generating strong, ultralight, energy-absorbing, and tough materials. Despite their promise, the clinical translation of 3D-printed bioceramic implants is hampered by regulatory and reimbursement hurdles. This review analyses recent advances in vat-photopolymerization printing of bioceramics, highlighting the technical challenges and the potential of nanoscale printing to enhance the mechanical and biological functions of implants. The review also provides recommendations for regulatory frameworks, envisioning a future with the successful clinical translation of advanced 3D architectures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Materials Reviews
International Materials Reviews 工程技术-材料科学:综合
CiteScore
28.50
自引率
0.00%
发文量
21
审稿时长
6 months
期刊介绍: International Materials Reviews (IMR) is a comprehensive publication that provides in-depth coverage of the current state and advancements in various materials technologies. With contributions from internationally respected experts, IMR offers a thorough analysis of the subject matter. It undergoes rigorous evaluation by committees in the United States and United Kingdom for ensuring the highest quality of content. Published by Sage on behalf of ASM International and the Institute of Materials, Minerals and Mining (UK), IMR is a valuable resource for professionals in the field. It is available online through Sage's platform, facilitating convenient access to its wealth of information. Jointly produced by ASM International and the Institute of Materials, Minerals and Mining (UK), IMR focuses on technologies that impact industries dealing with metals, structural ceramics, composite materials, and electronic materials. Its coverage spans from practical applications to theoretical and practical aspects of material extraction, production, fabrication, properties, and behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信