甜瓜模图函数中不存在不可约多重ζ值

IF 1.2 3区 数学 Q1 MATHEMATICS
E. D'hoker, M. B. Green
{"title":"甜瓜模图函数中不存在不可约多重ζ值","authors":"E. D'hoker, M. B. Green","doi":"10.4310/cntp.2020.v14.n2.a2","DOIUrl":null,"url":null,"abstract":"The expansion of a modular graph function on a torus of modulus $\\tau$ near the cusp is given by a Laurent polynomial in $y= \\pi \\Im (\\tau)$ with coefficients that are rational multiples of single-valued multiple zeta-values, apart from the leading term whose coefficient is rational and exponentially suppressed terms. We prove that the coefficients of the non-leading terms in the Laurent polynomial of the modular graph function $D_N(\\tau)$ associated with a melon graph is free of irreducible multiple zeta-values and can be written as a polynomial in odd zeta-values with rational coefficients for arbitrary $N \\geq 0$. The proof proceeds by expressing a generating function for $D_N(\\tau)$ in terms of an integral over the Virasoro-Shapiro closed-string tree amplitude.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2019-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Absence of irreducible multiple zeta-values in melon modular graph functions\",\"authors\":\"E. D'hoker, M. B. Green\",\"doi\":\"10.4310/cntp.2020.v14.n2.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The expansion of a modular graph function on a torus of modulus $\\\\tau$ near the cusp is given by a Laurent polynomial in $y= \\\\pi \\\\Im (\\\\tau)$ with coefficients that are rational multiples of single-valued multiple zeta-values, apart from the leading term whose coefficient is rational and exponentially suppressed terms. We prove that the coefficients of the non-leading terms in the Laurent polynomial of the modular graph function $D_N(\\\\tau)$ associated with a melon graph is free of irreducible multiple zeta-values and can be written as a polynomial in odd zeta-values with rational coefficients for arbitrary $N \\\\geq 0$. The proof proceeds by expressing a generating function for $D_N(\\\\tau)$ in terms of an integral over the Virasoro-Shapiro closed-string tree amplitude.\",\"PeriodicalId\":55616,\"journal\":{\"name\":\"Communications in Number Theory and Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2019-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Number Theory and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cntp.2020.v14.n2.a2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cntp.2020.v14.n2.a2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 21

摘要

模图函数在尖点附近模$\tau$的环面上的展开由$y=\pi\Im(\tau)$中的Laurent多项式给出,其系数是单值多ζ值的有理倍数,除了其系数是有理项和指数抑制项的前导项。我们证明了与甜瓜图相关的模图函数$D_N(\tau)$的Laurent多项式中的非前导项的系数不存在不可约的多重ζ值,并且可以写成任意$N\geq0$的具有有理系数的奇ζ值中的多项式。证明通过用Virasoro Shapiro闭弦树振幅上的积分表示$D_N(\tau)$的生成函数来进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Absence of irreducible multiple zeta-values in melon modular graph functions
The expansion of a modular graph function on a torus of modulus $\tau$ near the cusp is given by a Laurent polynomial in $y= \pi \Im (\tau)$ with coefficients that are rational multiples of single-valued multiple zeta-values, apart from the leading term whose coefficient is rational and exponentially suppressed terms. We prove that the coefficients of the non-leading terms in the Laurent polynomial of the modular graph function $D_N(\tau)$ associated with a melon graph is free of irreducible multiple zeta-values and can be written as a polynomial in odd zeta-values with rational coefficients for arbitrary $N \geq 0$. The proof proceeds by expressing a generating function for $D_N(\tau)$ in terms of an integral over the Virasoro-Shapiro closed-string tree amplitude.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Number Theory and Physics
Communications in Number Theory and Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信