超参数化与广义误差:加权三角插值

IF 1.9 Q1 MATHEMATICS, APPLIED
Yuege Xie, H. Chou, H. Rauhut, Rachel A. Ward
{"title":"超参数化与广义误差:加权三角插值","authors":"Yuege Xie, H. Chou, H. Rauhut, Rachel A. Ward","doi":"10.1137/21m1390955","DOIUrl":null,"url":null,"abstract":"Motivated by surprisingly good generalization properties of learned deep neural networks in overparameterized scenarios and by the related double descent phenomenon, this paper analyzes the relation between smoothness and low generalization error in an overparameterized linear learning problem. We study a random Fourier series model, where the task is to estimate the unknown Fourier coefficients from equidistant samples. We derive exact expressions for the generalization error of both plain and weighted least squares estimators. We show precisely how a bias towards smooth interpolants, in the form of weighted trigonometric interpolation, can lead to smaller generalization error in the overparameterized regime compared to the underparameterized regime. This provides insight into the power of overparameterization, which is common in modern machine learning.","PeriodicalId":74797,"journal":{"name":"SIAM journal on mathematics of data science","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2020-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Overparameterization and Generalization Error: Weighted Trigonometric Interpolation\",\"authors\":\"Yuege Xie, H. Chou, H. Rauhut, Rachel A. Ward\",\"doi\":\"10.1137/21m1390955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by surprisingly good generalization properties of learned deep neural networks in overparameterized scenarios and by the related double descent phenomenon, this paper analyzes the relation between smoothness and low generalization error in an overparameterized linear learning problem. We study a random Fourier series model, where the task is to estimate the unknown Fourier coefficients from equidistant samples. We derive exact expressions for the generalization error of both plain and weighted least squares estimators. We show precisely how a bias towards smooth interpolants, in the form of weighted trigonometric interpolation, can lead to smaller generalization error in the overparameterized regime compared to the underparameterized regime. This provides insight into the power of overparameterization, which is common in modern machine learning.\",\"PeriodicalId\":74797,\"journal\":{\"name\":\"SIAM journal on mathematics of data science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2020-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM journal on mathematics of data science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/21m1390955\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM journal on mathematics of data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21m1390955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

摘要

受学习深度神经网络在过参数化场景中令人惊讶的良好泛化特性以及相关的双下降现象的启发,本文分析了过参数化线性学习问题中平滑度与低泛化误差之间的关系。我们研究了一个随机傅立叶级数模型,其中的任务是从等距样本中估计未知的傅立叶系数。我们导出了素最小二乘估计量和加权最小二乘估计量的推广误差的精确表达式。我们精确地展示了加权三角插值形式的平滑插值的偏差如何在参数过高的情况下比参数过低的情况下导致更小的泛化误差。这让我们深入了解了过度参数化的力量,这在现代机器学习中很常见。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Overparameterization and Generalization Error: Weighted Trigonometric Interpolation
Motivated by surprisingly good generalization properties of learned deep neural networks in overparameterized scenarios and by the related double descent phenomenon, this paper analyzes the relation between smoothness and low generalization error in an overparameterized linear learning problem. We study a random Fourier series model, where the task is to estimate the unknown Fourier coefficients from equidistant samples. We derive exact expressions for the generalization error of both plain and weighted least squares estimators. We show precisely how a bias towards smooth interpolants, in the form of weighted trigonometric interpolation, can lead to smaller generalization error in the overparameterized regime compared to the underparameterized regime. This provides insight into the power of overparameterization, which is common in modern machine learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信