拟周期一维晶格中单粒子局部化问题的人工神经网络

IF 1.2 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Gustavo Alexis Dominguez Castro, Rosario Paredes Gutiérrez
{"title":"拟周期一维晶格中单粒子局部化问题的人工神经网络","authors":"Gustavo Alexis Dominguez Castro, Rosario Paredes Gutiérrez","doi":"10.31349/revmexfis.69.020502","DOIUrl":null,"url":null,"abstract":"The use of machine learning algorithms to address classification problems in several scientific branches has increased over the past years. In particular, the supervised learning technique with artificial neural networks has been successfully employed in classifying phases of matter. In this article, we use a fully connected feed-forward neural network to classify extended and localized single-particle states that arise from quasiperiodic one-dimensional lattices. We demonstrate that our neural network achieves to correctly uncover the nature of the single-particle states even when the wave functions come from a more complex Hamiltonian than the one used to train the network.","PeriodicalId":21538,"journal":{"name":"Revista Mexicana De Fisica","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial neural network for the single-particle localization problem in quasiperiodic one-dimensional lattices\",\"authors\":\"Gustavo Alexis Dominguez Castro, Rosario Paredes Gutiérrez\",\"doi\":\"10.31349/revmexfis.69.020502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of machine learning algorithms to address classification problems in several scientific branches has increased over the past years. In particular, the supervised learning technique with artificial neural networks has been successfully employed in classifying phases of matter. In this article, we use a fully connected feed-forward neural network to classify extended and localized single-particle states that arise from quasiperiodic one-dimensional lattices. We demonstrate that our neural network achieves to correctly uncover the nature of the single-particle states even when the wave functions come from a more complex Hamiltonian than the one used to train the network.\",\"PeriodicalId\":21538,\"journal\":{\"name\":\"Revista Mexicana De Fisica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Mexicana De Fisica\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.31349/revmexfis.69.020502\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Mexicana De Fisica","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.31349/revmexfis.69.020502","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在过去的几年里,在几个科学分支中,使用机器学习算法来解决分类问题的情况有所增加。特别地,人工神经网络的监督学习技术已经成功地应用于物质的相分类。在本文中,我们使用一个完全连接的前馈神经网络对准周期一维晶格中产生的扩展和局部单粒子态进行分类。我们证明,即使波函数来自比用于训练网络的哈密顿函数更复杂的哈密顿函数,我们的神经网络也能正确地揭示单粒子状态的本质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial neural network for the single-particle localization problem in quasiperiodic one-dimensional lattices
The use of machine learning algorithms to address classification problems in several scientific branches has increased over the past years. In particular, the supervised learning technique with artificial neural networks has been successfully employed in classifying phases of matter. In this article, we use a fully connected feed-forward neural network to classify extended and localized single-particle states that arise from quasiperiodic one-dimensional lattices. We demonstrate that our neural network achieves to correctly uncover the nature of the single-particle states even when the wave functions come from a more complex Hamiltonian than the one used to train the network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista Mexicana De Fisica
Revista Mexicana De Fisica 物理-物理:综合
CiteScore
2.20
自引率
11.80%
发文量
87
审稿时长
4-8 weeks
期刊介绍: Durante los últimos años, los responsables de la Revista Mexicana de Física, la Revista Mexicana de Física E y la Revista Mexicana de Física S, hemos realizado esfuerzos para fortalecer la presencia de estas publicaciones en nuestra página Web ( http://rmf.smf.mx).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信